include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,4,3,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,4,3,3}*1920
Also Known As : {{{10,4|2},{4,3}},{4,3,3}4}. if this polytope has another name.
Group : SmallGroup(1920,238598)
Rank : 5
Schlafli Type : {10,4,3,3}
Number of vertices, edges, etc : 10, 40, 16, 12, 4
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
4-fold quotients : {10,2,3,3}*480
5-fold quotients : {2,4,3,3}*384
8-fold quotients : {5,2,3,3}*240
20-fold quotients : {2,2,3,3}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)
(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,49)(34,50)(35,51)(36,52)(37,53)
(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)
(48,64);;
s1 := ( 1,17)( 2,18)( 3,19)( 4,20)( 5,22)( 6,21)( 7,24)( 8,23)( 9,27)(10,28)
(11,25)(12,26)(13,32)(14,31)(15,30)(16,29)(33,65)(34,66)(35,67)(36,68)(37,70)
(38,69)(39,72)(40,71)(41,75)(42,76)(43,73)(44,74)(45,80)(46,79)(47,78)(48,77)
(53,54)(55,56)(57,59)(58,60)(61,64)(62,63);;
s2 := ( 1, 5)( 2, 6)( 3, 8)( 4, 7)(11,12)(15,16)(17,21)(18,22)(19,24)(20,23)
(27,28)(31,32)(33,37)(34,38)(35,40)(36,39)(43,44)(47,48)(49,53)(50,54)(51,56)
(52,55)(59,60)(63,64)(65,69)(66,70)(67,72)(68,71)(75,76)(79,80);;
s3 := ( 2, 4)( 5,13)( 6,16)( 7,15)( 8,14)(10,12)(18,20)(21,29)(22,32)(23,31)
(24,30)(26,28)(34,36)(37,45)(38,48)(39,47)(40,46)(42,44)(50,52)(53,61)(54,64)
(55,63)(56,62)(58,60)(66,68)(69,77)(70,80)(71,79)(72,78)(74,76);;
s4 := ( 3, 4)( 7, 8)( 9,13)(10,14)(11,16)(12,15)(19,20)(23,24)(25,29)(26,30)
(27,32)(28,31)(35,36)(39,40)(41,45)(42,46)(43,48)(44,47)(51,52)(55,56)(57,61)
(58,62)(59,64)(60,63)(67,68)(71,72)(73,77)(74,78)(75,80)(76,79);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s4*s3*s2*s1*s2*s3*s4*s2*s3*s1*s2*s1*s3*s2*s3*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(80)!(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)
(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,49)(34,50)(35,51)(36,52)
(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)
(48,64);
s1 := Sym(80)!( 1,17)( 2,18)( 3,19)( 4,20)( 5,22)( 6,21)( 7,24)( 8,23)( 9,27)
(10,28)(11,25)(12,26)(13,32)(14,31)(15,30)(16,29)(33,65)(34,66)(35,67)(36,68)
(37,70)(38,69)(39,72)(40,71)(41,75)(42,76)(43,73)(44,74)(45,80)(46,79)(47,78)
(48,77)(53,54)(55,56)(57,59)(58,60)(61,64)(62,63);
s2 := Sym(80)!( 1, 5)( 2, 6)( 3, 8)( 4, 7)(11,12)(15,16)(17,21)(18,22)(19,24)
(20,23)(27,28)(31,32)(33,37)(34,38)(35,40)(36,39)(43,44)(47,48)(49,53)(50,54)
(51,56)(52,55)(59,60)(63,64)(65,69)(66,70)(67,72)(68,71)(75,76)(79,80);
s3 := Sym(80)!( 2, 4)( 5,13)( 6,16)( 7,15)( 8,14)(10,12)(18,20)(21,29)(22,32)
(23,31)(24,30)(26,28)(34,36)(37,45)(38,48)(39,47)(40,46)(42,44)(50,52)(53,61)
(54,64)(55,63)(56,62)(58,60)(66,68)(69,77)(70,80)(71,79)(72,78)(74,76);
s4 := Sym(80)!( 3, 4)( 7, 8)( 9,13)(10,14)(11,16)(12,15)(19,20)(23,24)(25,29)
(26,30)(27,32)(28,31)(35,36)(39,40)(41,45)(42,46)(43,48)(44,47)(51,52)(55,56)
(57,61)(58,62)(59,64)(60,63)(67,68)(71,72)(73,77)(74,78)(75,80)(76,79);
poly := sub<Sym(80)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s2*s3*s2*s3*s2*s3, s3*s4*s3*s4*s3*s4,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s4*s3*s2*s1*s2*s3*s4*s2*s3*s1*s2*s1*s3*s2*s3*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope