include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,40}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,40}*1920c
if this polytope has a name.
Group : SmallGroup(1920,238599)
Rank : 3
Schlafli Type : {6,40}
Number of vertices, edges, etc : 24, 480, 160
Order of s0s1s2 : 30
Order of s0s1s2s1 : 8
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
4-fold quotients : {6,20}*480c
5-fold quotients : {6,8}*384e
8-fold quotients : {6,20}*240b
10-fold quotients : {3,8}*192
16-fold quotients : {6,10}*120
20-fold quotients : {6,4}*96
40-fold quotients : {3,4}*48, {6,4}*48b, {6,4}*48c
48-fold quotients : {2,10}*40
80-fold quotients : {3,4}*24, {6,2}*24
96-fold quotients : {2,5}*20
160-fold quotients : {3,2}*12
240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 9,13)(10,14)(11,16)(12,15)(19,20)(21,22)(25,29)(26,30)
(27,32)(28,31)(35,36)(37,38)(41,45)(42,46)(43,48)(44,47)(51,52)(53,54)(57,61)
(58,62)(59,64)(60,63)(67,68)(69,70)(73,77)(74,78)(75,80)(76,79);;
s1 := ( 2, 4)( 5,14)( 6,15)( 7,16)( 8,13)(10,12)(17,65)(18,68)(19,67)(20,66)
(21,78)(22,79)(23,80)(24,77)(25,73)(26,76)(27,75)(28,74)(29,72)(30,69)(31,70)
(32,71)(33,49)(34,52)(35,51)(36,50)(37,62)(38,63)(39,64)(40,61)(41,57)(42,60)
(43,59)(44,58)(45,56)(46,53)(47,54)(48,55);;
s2 := ( 1,23)( 2,24)( 3,21)( 4,22)( 5,19)( 6,20)( 7,17)( 8,18)( 9,29)(10,30)
(11,31)(12,32)(13,25)(14,26)(15,27)(16,28)(33,71)(34,72)(35,69)(36,70)(37,67)
(38,68)(39,65)(40,66)(41,77)(42,78)(43,79)(44,80)(45,73)(46,74)(47,75)(48,76)
(49,55)(50,56)(51,53)(52,54)(57,61)(58,62)(59,63)(60,64);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s0*s1,
s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(80)!( 3, 4)( 5, 6)( 9,13)(10,14)(11,16)(12,15)(19,20)(21,22)(25,29)
(26,30)(27,32)(28,31)(35,36)(37,38)(41,45)(42,46)(43,48)(44,47)(51,52)(53,54)
(57,61)(58,62)(59,64)(60,63)(67,68)(69,70)(73,77)(74,78)(75,80)(76,79);
s1 := Sym(80)!( 2, 4)( 5,14)( 6,15)( 7,16)( 8,13)(10,12)(17,65)(18,68)(19,67)
(20,66)(21,78)(22,79)(23,80)(24,77)(25,73)(26,76)(27,75)(28,74)(29,72)(30,69)
(31,70)(32,71)(33,49)(34,52)(35,51)(36,50)(37,62)(38,63)(39,64)(40,61)(41,57)
(42,60)(43,59)(44,58)(45,56)(46,53)(47,54)(48,55);
s2 := Sym(80)!( 1,23)( 2,24)( 3,21)( 4,22)( 5,19)( 6,20)( 7,17)( 8,18)( 9,29)
(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28)(33,71)(34,72)(35,69)(36,70)
(37,67)(38,68)(39,65)(40,66)(41,77)(42,78)(43,79)(44,80)(45,73)(46,74)(47,75)
(48,76)(49,55)(50,56)(51,53)(52,54)(57,61)(58,62)(59,63)(60,64);
poly := sub<Sym(80)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s0*s1,
s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1 >;
References : None.
to this polytope