include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,20}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,20}*480c
if this polytope has a name.
Group : SmallGroup(480,1193)
Rank : 3
Schlafli Type : {6,20}
Number of vertices, edges, etc : 12, 120, 40
Order of s0s1s2 : 30
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,20,2} of size 960
{6,20,4} of size 1920
Vertex Figure Of :
{2,6,20} of size 960
{3,6,20} of size 1920
{4,6,20} of size 1920
{4,6,20} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,20}*240b
4-fold quotients : {6,10}*120
5-fold quotients : {6,4}*96
10-fold quotients : {3,4}*48, {6,4}*48b, {6,4}*48c
12-fold quotients : {2,10}*40
20-fold quotients : {3,4}*24, {6,2}*24
24-fold quotients : {2,5}*20
40-fold quotients : {3,2}*12
60-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,20}*960b, {6,20}*960e, {6,40}*960d, {6,40}*960e, {12,20}*960c
3-fold covers : {18,20}*1440, {6,60}*1440c, {6,60}*1440d
4-fold covers : {6,40}*1920a, {12,40}*1920e, {12,40}*1920f, {6,40}*1920b, {6,20}*1920a, {6,40}*1920c, {24,20}*1920c, {24,20}*1920d, {6,40}*1920d, {6,20}*1920b, {12,20}*1920b, {12,20}*1920c, {12,40}*1920g, {12,40}*1920h, {24,20}*1920e, {24,20}*1920f
Permutation Representation (GAP) :
s0 := ( 2, 3)( 6, 7)( 10, 11)( 14, 15)( 18, 19)( 21, 41)( 22, 43)( 23, 42)
( 24, 44)( 25, 45)( 26, 47)( 27, 46)( 28, 48)( 29, 49)( 30, 51)( 31, 50)
( 32, 52)( 33, 53)( 34, 55)( 35, 54)( 36, 56)( 37, 57)( 38, 59)( 39, 58)
( 40, 60)( 62, 63)( 66, 67)( 70, 71)( 74, 75)( 78, 79)( 81,101)( 82,103)
( 83,102)( 84,104)( 85,105)( 86,107)( 87,106)( 88,108)( 89,109)( 90,111)
( 91,110)( 92,112)( 93,113)( 94,115)( 95,114)( 96,116)( 97,117)( 98,119)
( 99,118)(100,120);;
s1 := ( 1, 21)( 2, 22)( 3, 24)( 4, 23)( 5, 37)( 6, 38)( 7, 40)( 8, 39)
( 9, 33)( 10, 34)( 11, 36)( 12, 35)( 13, 29)( 14, 30)( 15, 32)( 16, 31)
( 17, 25)( 18, 26)( 19, 28)( 20, 27)( 43, 44)( 45, 57)( 46, 58)( 47, 60)
( 48, 59)( 49, 53)( 50, 54)( 51, 56)( 52, 55)( 61, 81)( 62, 82)( 63, 84)
( 64, 83)( 65, 97)( 66, 98)( 67,100)( 68, 99)( 69, 93)( 70, 94)( 71, 96)
( 72, 95)( 73, 89)( 74, 90)( 75, 92)( 76, 91)( 77, 85)( 78, 86)( 79, 88)
( 80, 87)(103,104)(105,117)(106,118)(107,120)(108,119)(109,113)(110,114)
(111,116)(112,115);;
s2 := ( 1, 68)( 2, 67)( 3, 66)( 4, 65)( 5, 64)( 6, 63)( 7, 62)( 8, 61)
( 9, 80)( 10, 79)( 11, 78)( 12, 77)( 13, 76)( 14, 75)( 15, 74)( 16, 73)
( 17, 72)( 18, 71)( 19, 70)( 20, 69)( 21, 88)( 22, 87)( 23, 86)( 24, 85)
( 25, 84)( 26, 83)( 27, 82)( 28, 81)( 29,100)( 30, 99)( 31, 98)( 32, 97)
( 33, 96)( 34, 95)( 35, 94)( 36, 93)( 37, 92)( 38, 91)( 39, 90)( 40, 89)
( 41,108)( 42,107)( 43,106)( 44,105)( 45,104)( 46,103)( 47,102)( 48,101)
( 49,120)( 50,119)( 51,118)( 52,117)( 53,116)( 54,115)( 55,114)( 56,113)
( 57,112)( 58,111)( 59,110)( 60,109);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(120)!( 2, 3)( 6, 7)( 10, 11)( 14, 15)( 18, 19)( 21, 41)( 22, 43)
( 23, 42)( 24, 44)( 25, 45)( 26, 47)( 27, 46)( 28, 48)( 29, 49)( 30, 51)
( 31, 50)( 32, 52)( 33, 53)( 34, 55)( 35, 54)( 36, 56)( 37, 57)( 38, 59)
( 39, 58)( 40, 60)( 62, 63)( 66, 67)( 70, 71)( 74, 75)( 78, 79)( 81,101)
( 82,103)( 83,102)( 84,104)( 85,105)( 86,107)( 87,106)( 88,108)( 89,109)
( 90,111)( 91,110)( 92,112)( 93,113)( 94,115)( 95,114)( 96,116)( 97,117)
( 98,119)( 99,118)(100,120);
s1 := Sym(120)!( 1, 21)( 2, 22)( 3, 24)( 4, 23)( 5, 37)( 6, 38)( 7, 40)
( 8, 39)( 9, 33)( 10, 34)( 11, 36)( 12, 35)( 13, 29)( 14, 30)( 15, 32)
( 16, 31)( 17, 25)( 18, 26)( 19, 28)( 20, 27)( 43, 44)( 45, 57)( 46, 58)
( 47, 60)( 48, 59)( 49, 53)( 50, 54)( 51, 56)( 52, 55)( 61, 81)( 62, 82)
( 63, 84)( 64, 83)( 65, 97)( 66, 98)( 67,100)( 68, 99)( 69, 93)( 70, 94)
( 71, 96)( 72, 95)( 73, 89)( 74, 90)( 75, 92)( 76, 91)( 77, 85)( 78, 86)
( 79, 88)( 80, 87)(103,104)(105,117)(106,118)(107,120)(108,119)(109,113)
(110,114)(111,116)(112,115);
s2 := Sym(120)!( 1, 68)( 2, 67)( 3, 66)( 4, 65)( 5, 64)( 6, 63)( 7, 62)
( 8, 61)( 9, 80)( 10, 79)( 11, 78)( 12, 77)( 13, 76)( 14, 75)( 15, 74)
( 16, 73)( 17, 72)( 18, 71)( 19, 70)( 20, 69)( 21, 88)( 22, 87)( 23, 86)
( 24, 85)( 25, 84)( 26, 83)( 27, 82)( 28, 81)( 29,100)( 30, 99)( 31, 98)
( 32, 97)( 33, 96)( 34, 95)( 35, 94)( 36, 93)( 37, 92)( 38, 91)( 39, 90)
( 40, 89)( 41,108)( 42,107)( 43,106)( 44,105)( 45,104)( 46,103)( 47,102)
( 48,101)( 49,120)( 50,119)( 51,118)( 52,117)( 53,116)( 54,115)( 55,114)
( 56,113)( 57,112)( 58,111)( 59,110)( 60,109);
poly := sub<Sym(120)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1 >;
References : None.
to this polytope