Polytope of Type {120,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {120,6}*1920a
if this polytope has a name.
Group : SmallGroup(1920,238620)
Rank : 3
Schlafli Type : {120,6}
Number of vertices, edges, etc : 160, 480, 8
Order of s0s1s2 : 40
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {60,6}*960a
   4-fold quotients : {30,6}*480
   5-fold quotients : {24,6}*384a
   8-fold quotients : {15,6}*240
   10-fold quotients : {12,6}*192a
   12-fold quotients : {40,2}*160
   20-fold quotients : {6,6}*96
   24-fold quotients : {20,2}*80
   40-fold quotients : {3,6}*48, {6,3}*48
   48-fold quotients : {10,2}*40
   60-fold quotients : {8,2}*32
   80-fold quotients : {3,3}*24
   96-fold quotients : {5,2}*20
   120-fold quotients : {4,2}*16
   240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  5, 17)(  6, 18)(  7, 20)(  8, 19)(  9, 13)( 10, 14)( 11, 16)
( 12, 15)( 21, 41)( 22, 42)( 23, 44)( 24, 43)( 25, 57)( 26, 58)( 27, 60)
( 28, 59)( 29, 53)( 30, 54)( 31, 56)( 32, 55)( 33, 49)( 34, 50)( 35, 52)
( 36, 51)( 37, 45)( 38, 46)( 39, 48)( 40, 47)( 63, 64)( 65, 77)( 66, 78)
( 67, 80)( 68, 79)( 69, 73)( 70, 74)( 71, 76)( 72, 75)( 81,101)( 82,102)
( 83,104)( 84,103)( 85,117)( 86,118)( 87,120)( 88,119)( 89,113)( 90,114)
( 91,116)( 92,115)( 93,109)( 94,110)( 95,112)( 96,111)( 97,105)( 98,106)
( 99,108)(100,107)(121,181)(122,182)(123,184)(124,183)(125,197)(126,198)
(127,200)(128,199)(129,193)(130,194)(131,196)(132,195)(133,189)(134,190)
(135,192)(136,191)(137,185)(138,186)(139,188)(140,187)(141,221)(142,222)
(143,224)(144,223)(145,237)(146,238)(147,240)(148,239)(149,233)(150,234)
(151,236)(152,235)(153,229)(154,230)(155,232)(156,231)(157,225)(158,226)
(159,228)(160,227)(161,201)(162,202)(163,204)(164,203)(165,217)(166,218)
(167,220)(168,219)(169,213)(170,214)(171,216)(172,215)(173,209)(174,210)
(175,212)(176,211)(177,205)(178,206)(179,208)(180,207)(241,361)(242,362)
(243,364)(244,363)(245,377)(246,378)(247,380)(248,379)(249,373)(250,374)
(251,376)(252,375)(253,369)(254,370)(255,372)(256,371)(257,365)(258,366)
(259,368)(260,367)(261,401)(262,402)(263,404)(264,403)(265,417)(266,418)
(267,420)(268,419)(269,413)(270,414)(271,416)(272,415)(273,409)(274,410)
(275,412)(276,411)(277,405)(278,406)(279,408)(280,407)(281,381)(282,382)
(283,384)(284,383)(285,397)(286,398)(287,400)(288,399)(289,393)(290,394)
(291,396)(292,395)(293,389)(294,390)(295,392)(296,391)(297,385)(298,386)
(299,388)(300,387)(301,421)(302,422)(303,424)(304,423)(305,437)(306,438)
(307,440)(308,439)(309,433)(310,434)(311,436)(312,435)(313,429)(314,430)
(315,432)(316,431)(317,425)(318,426)(319,428)(320,427)(321,461)(322,462)
(323,464)(324,463)(325,477)(326,478)(327,480)(328,479)(329,473)(330,474)
(331,476)(332,475)(333,469)(334,470)(335,472)(336,471)(337,465)(338,466)
(339,468)(340,467)(341,441)(342,442)(343,444)(344,443)(345,457)(346,458)
(347,460)(348,459)(349,453)(350,454)(351,456)(352,455)(353,449)(354,450)
(355,452)(356,451)(357,445)(358,446)(359,448)(360,447);;
s1 := (  1,265)(  2,268)(  3,267)(  4,266)(  5,261)(  6,264)(  7,263)(  8,262)
(  9,277)( 10,280)( 11,279)( 12,278)( 13,273)( 14,276)( 15,275)( 16,274)
( 17,269)( 18,272)( 19,271)( 20,270)( 21,245)( 22,248)( 23,247)( 24,246)
( 25,241)( 26,244)( 27,243)( 28,242)( 29,257)( 30,260)( 31,259)( 32,258)
( 33,253)( 34,256)( 35,255)( 36,254)( 37,249)( 38,252)( 39,251)( 40,250)
( 41,285)( 42,288)( 43,287)( 44,286)( 45,281)( 46,284)( 47,283)( 48,282)
( 49,297)( 50,300)( 51,299)( 52,298)( 53,293)( 54,296)( 55,295)( 56,294)
( 57,289)( 58,292)( 59,291)( 60,290)( 61,325)( 62,328)( 63,327)( 64,326)
( 65,321)( 66,324)( 67,323)( 68,322)( 69,337)( 70,340)( 71,339)( 72,338)
( 73,333)( 74,336)( 75,335)( 76,334)( 77,329)( 78,332)( 79,331)( 80,330)
( 81,305)( 82,308)( 83,307)( 84,306)( 85,301)( 86,304)( 87,303)( 88,302)
( 89,317)( 90,320)( 91,319)( 92,318)( 93,313)( 94,316)( 95,315)( 96,314)
( 97,309)( 98,312)( 99,311)(100,310)(101,345)(102,348)(103,347)(104,346)
(105,341)(106,344)(107,343)(108,342)(109,357)(110,360)(111,359)(112,358)
(113,353)(114,356)(115,355)(116,354)(117,349)(118,352)(119,351)(120,350)
(121,445)(122,448)(123,447)(124,446)(125,441)(126,444)(127,443)(128,442)
(129,457)(130,460)(131,459)(132,458)(133,453)(134,456)(135,455)(136,454)
(137,449)(138,452)(139,451)(140,450)(141,425)(142,428)(143,427)(144,426)
(145,421)(146,424)(147,423)(148,422)(149,437)(150,440)(151,439)(152,438)
(153,433)(154,436)(155,435)(156,434)(157,429)(158,432)(159,431)(160,430)
(161,465)(162,468)(163,467)(164,466)(165,461)(166,464)(167,463)(168,462)
(169,477)(170,480)(171,479)(172,478)(173,473)(174,476)(175,475)(176,474)
(177,469)(178,472)(179,471)(180,470)(181,385)(182,388)(183,387)(184,386)
(185,381)(186,384)(187,383)(188,382)(189,397)(190,400)(191,399)(192,398)
(193,393)(194,396)(195,395)(196,394)(197,389)(198,392)(199,391)(200,390)
(201,365)(202,368)(203,367)(204,366)(205,361)(206,364)(207,363)(208,362)
(209,377)(210,380)(211,379)(212,378)(213,373)(214,376)(215,375)(216,374)
(217,369)(218,372)(219,371)(220,370)(221,405)(222,408)(223,407)(224,406)
(225,401)(226,404)(227,403)(228,402)(229,417)(230,420)(231,419)(232,418)
(233,413)(234,416)(235,415)(236,414)(237,409)(238,412)(239,411)(240,410);;
s2 := (  1,  2)(  5,  6)(  9, 10)( 13, 14)( 17, 18)( 21, 42)( 22, 41)( 23, 43)
( 24, 44)( 25, 46)( 26, 45)( 27, 47)( 28, 48)( 29, 50)( 30, 49)( 31, 51)
( 32, 52)( 33, 54)( 34, 53)( 35, 55)( 36, 56)( 37, 58)( 38, 57)( 39, 59)
( 40, 60)( 61, 62)( 65, 66)( 69, 70)( 73, 74)( 77, 78)( 81,102)( 82,101)
( 83,103)( 84,104)( 85,106)( 86,105)( 87,107)( 88,108)( 89,110)( 90,109)
( 91,111)( 92,112)( 93,114)( 94,113)( 95,115)( 96,116)( 97,118)( 98,117)
( 99,119)(100,120)(121,122)(125,126)(129,130)(133,134)(137,138)(141,162)
(142,161)(143,163)(144,164)(145,166)(146,165)(147,167)(148,168)(149,170)
(150,169)(151,171)(152,172)(153,174)(154,173)(155,175)(156,176)(157,178)
(158,177)(159,179)(160,180)(181,182)(185,186)(189,190)(193,194)(197,198)
(201,222)(202,221)(203,223)(204,224)(205,226)(206,225)(207,227)(208,228)
(209,230)(210,229)(211,231)(212,232)(213,234)(214,233)(215,235)(216,236)
(217,238)(218,237)(219,239)(220,240)(241,242)(245,246)(249,250)(253,254)
(257,258)(261,282)(262,281)(263,283)(264,284)(265,286)(266,285)(267,287)
(268,288)(269,290)(270,289)(271,291)(272,292)(273,294)(274,293)(275,295)
(276,296)(277,298)(278,297)(279,299)(280,300)(301,302)(305,306)(309,310)
(313,314)(317,318)(321,342)(322,341)(323,343)(324,344)(325,346)(326,345)
(327,347)(328,348)(329,350)(330,349)(331,351)(332,352)(333,354)(334,353)
(335,355)(336,356)(337,358)(338,357)(339,359)(340,360)(361,362)(365,366)
(369,370)(373,374)(377,378)(381,402)(382,401)(383,403)(384,404)(385,406)
(386,405)(387,407)(388,408)(389,410)(390,409)(391,411)(392,412)(393,414)
(394,413)(395,415)(396,416)(397,418)(398,417)(399,419)(400,420)(421,422)
(425,426)(429,430)(433,434)(437,438)(441,462)(442,461)(443,463)(444,464)
(445,466)(446,465)(447,467)(448,468)(449,470)(450,469)(451,471)(452,472)
(453,474)(454,473)(455,475)(456,476)(457,478)(458,477)(459,479)(460,480);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(480)!(  3,  4)(  5, 17)(  6, 18)(  7, 20)(  8, 19)(  9, 13)( 10, 14)
( 11, 16)( 12, 15)( 21, 41)( 22, 42)( 23, 44)( 24, 43)( 25, 57)( 26, 58)
( 27, 60)( 28, 59)( 29, 53)( 30, 54)( 31, 56)( 32, 55)( 33, 49)( 34, 50)
( 35, 52)( 36, 51)( 37, 45)( 38, 46)( 39, 48)( 40, 47)( 63, 64)( 65, 77)
( 66, 78)( 67, 80)( 68, 79)( 69, 73)( 70, 74)( 71, 76)( 72, 75)( 81,101)
( 82,102)( 83,104)( 84,103)( 85,117)( 86,118)( 87,120)( 88,119)( 89,113)
( 90,114)( 91,116)( 92,115)( 93,109)( 94,110)( 95,112)( 96,111)( 97,105)
( 98,106)( 99,108)(100,107)(121,181)(122,182)(123,184)(124,183)(125,197)
(126,198)(127,200)(128,199)(129,193)(130,194)(131,196)(132,195)(133,189)
(134,190)(135,192)(136,191)(137,185)(138,186)(139,188)(140,187)(141,221)
(142,222)(143,224)(144,223)(145,237)(146,238)(147,240)(148,239)(149,233)
(150,234)(151,236)(152,235)(153,229)(154,230)(155,232)(156,231)(157,225)
(158,226)(159,228)(160,227)(161,201)(162,202)(163,204)(164,203)(165,217)
(166,218)(167,220)(168,219)(169,213)(170,214)(171,216)(172,215)(173,209)
(174,210)(175,212)(176,211)(177,205)(178,206)(179,208)(180,207)(241,361)
(242,362)(243,364)(244,363)(245,377)(246,378)(247,380)(248,379)(249,373)
(250,374)(251,376)(252,375)(253,369)(254,370)(255,372)(256,371)(257,365)
(258,366)(259,368)(260,367)(261,401)(262,402)(263,404)(264,403)(265,417)
(266,418)(267,420)(268,419)(269,413)(270,414)(271,416)(272,415)(273,409)
(274,410)(275,412)(276,411)(277,405)(278,406)(279,408)(280,407)(281,381)
(282,382)(283,384)(284,383)(285,397)(286,398)(287,400)(288,399)(289,393)
(290,394)(291,396)(292,395)(293,389)(294,390)(295,392)(296,391)(297,385)
(298,386)(299,388)(300,387)(301,421)(302,422)(303,424)(304,423)(305,437)
(306,438)(307,440)(308,439)(309,433)(310,434)(311,436)(312,435)(313,429)
(314,430)(315,432)(316,431)(317,425)(318,426)(319,428)(320,427)(321,461)
(322,462)(323,464)(324,463)(325,477)(326,478)(327,480)(328,479)(329,473)
(330,474)(331,476)(332,475)(333,469)(334,470)(335,472)(336,471)(337,465)
(338,466)(339,468)(340,467)(341,441)(342,442)(343,444)(344,443)(345,457)
(346,458)(347,460)(348,459)(349,453)(350,454)(351,456)(352,455)(353,449)
(354,450)(355,452)(356,451)(357,445)(358,446)(359,448)(360,447);
s1 := Sym(480)!(  1,265)(  2,268)(  3,267)(  4,266)(  5,261)(  6,264)(  7,263)
(  8,262)(  9,277)( 10,280)( 11,279)( 12,278)( 13,273)( 14,276)( 15,275)
( 16,274)( 17,269)( 18,272)( 19,271)( 20,270)( 21,245)( 22,248)( 23,247)
( 24,246)( 25,241)( 26,244)( 27,243)( 28,242)( 29,257)( 30,260)( 31,259)
( 32,258)( 33,253)( 34,256)( 35,255)( 36,254)( 37,249)( 38,252)( 39,251)
( 40,250)( 41,285)( 42,288)( 43,287)( 44,286)( 45,281)( 46,284)( 47,283)
( 48,282)( 49,297)( 50,300)( 51,299)( 52,298)( 53,293)( 54,296)( 55,295)
( 56,294)( 57,289)( 58,292)( 59,291)( 60,290)( 61,325)( 62,328)( 63,327)
( 64,326)( 65,321)( 66,324)( 67,323)( 68,322)( 69,337)( 70,340)( 71,339)
( 72,338)( 73,333)( 74,336)( 75,335)( 76,334)( 77,329)( 78,332)( 79,331)
( 80,330)( 81,305)( 82,308)( 83,307)( 84,306)( 85,301)( 86,304)( 87,303)
( 88,302)( 89,317)( 90,320)( 91,319)( 92,318)( 93,313)( 94,316)( 95,315)
( 96,314)( 97,309)( 98,312)( 99,311)(100,310)(101,345)(102,348)(103,347)
(104,346)(105,341)(106,344)(107,343)(108,342)(109,357)(110,360)(111,359)
(112,358)(113,353)(114,356)(115,355)(116,354)(117,349)(118,352)(119,351)
(120,350)(121,445)(122,448)(123,447)(124,446)(125,441)(126,444)(127,443)
(128,442)(129,457)(130,460)(131,459)(132,458)(133,453)(134,456)(135,455)
(136,454)(137,449)(138,452)(139,451)(140,450)(141,425)(142,428)(143,427)
(144,426)(145,421)(146,424)(147,423)(148,422)(149,437)(150,440)(151,439)
(152,438)(153,433)(154,436)(155,435)(156,434)(157,429)(158,432)(159,431)
(160,430)(161,465)(162,468)(163,467)(164,466)(165,461)(166,464)(167,463)
(168,462)(169,477)(170,480)(171,479)(172,478)(173,473)(174,476)(175,475)
(176,474)(177,469)(178,472)(179,471)(180,470)(181,385)(182,388)(183,387)
(184,386)(185,381)(186,384)(187,383)(188,382)(189,397)(190,400)(191,399)
(192,398)(193,393)(194,396)(195,395)(196,394)(197,389)(198,392)(199,391)
(200,390)(201,365)(202,368)(203,367)(204,366)(205,361)(206,364)(207,363)
(208,362)(209,377)(210,380)(211,379)(212,378)(213,373)(214,376)(215,375)
(216,374)(217,369)(218,372)(219,371)(220,370)(221,405)(222,408)(223,407)
(224,406)(225,401)(226,404)(227,403)(228,402)(229,417)(230,420)(231,419)
(232,418)(233,413)(234,416)(235,415)(236,414)(237,409)(238,412)(239,411)
(240,410);
s2 := Sym(480)!(  1,  2)(  5,  6)(  9, 10)( 13, 14)( 17, 18)( 21, 42)( 22, 41)
( 23, 43)( 24, 44)( 25, 46)( 26, 45)( 27, 47)( 28, 48)( 29, 50)( 30, 49)
( 31, 51)( 32, 52)( 33, 54)( 34, 53)( 35, 55)( 36, 56)( 37, 58)( 38, 57)
( 39, 59)( 40, 60)( 61, 62)( 65, 66)( 69, 70)( 73, 74)( 77, 78)( 81,102)
( 82,101)( 83,103)( 84,104)( 85,106)( 86,105)( 87,107)( 88,108)( 89,110)
( 90,109)( 91,111)( 92,112)( 93,114)( 94,113)( 95,115)( 96,116)( 97,118)
( 98,117)( 99,119)(100,120)(121,122)(125,126)(129,130)(133,134)(137,138)
(141,162)(142,161)(143,163)(144,164)(145,166)(146,165)(147,167)(148,168)
(149,170)(150,169)(151,171)(152,172)(153,174)(154,173)(155,175)(156,176)
(157,178)(158,177)(159,179)(160,180)(181,182)(185,186)(189,190)(193,194)
(197,198)(201,222)(202,221)(203,223)(204,224)(205,226)(206,225)(207,227)
(208,228)(209,230)(210,229)(211,231)(212,232)(213,234)(214,233)(215,235)
(216,236)(217,238)(218,237)(219,239)(220,240)(241,242)(245,246)(249,250)
(253,254)(257,258)(261,282)(262,281)(263,283)(264,284)(265,286)(266,285)
(267,287)(268,288)(269,290)(270,289)(271,291)(272,292)(273,294)(274,293)
(275,295)(276,296)(277,298)(278,297)(279,299)(280,300)(301,302)(305,306)
(309,310)(313,314)(317,318)(321,342)(322,341)(323,343)(324,344)(325,346)
(326,345)(327,347)(328,348)(329,350)(330,349)(331,351)(332,352)(333,354)
(334,353)(335,355)(336,356)(337,358)(338,357)(339,359)(340,360)(361,362)
(365,366)(369,370)(373,374)(377,378)(381,402)(382,401)(383,403)(384,404)
(385,406)(386,405)(387,407)(388,408)(389,410)(390,409)(391,411)(392,412)
(393,414)(394,413)(395,415)(396,416)(397,418)(398,417)(399,419)(400,420)
(421,422)(425,426)(429,430)(433,434)(437,438)(441,462)(442,461)(443,463)
(444,464)(445,466)(446,465)(447,467)(448,468)(449,470)(450,469)(451,471)
(452,472)(453,474)(454,473)(455,475)(456,476)(457,478)(458,477)(459,479)
(460,480);
poly := sub<Sym(480)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope