include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,15,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,15,8}*1920a
if this polytope has a name.
Group : SmallGroup(1920,239473)
Rank : 4
Schlafli Type : {2,15,8}
Number of vertices, edges, etc : 2, 60, 240, 32
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
4-fold quotients : {2,15,4}*480
5-fold quotients : {2,3,8}*384
8-fold quotients : {2,15,4}*240
16-fold quotients : {2,15,2}*120
20-fold quotients : {2,3,4}*96
40-fold quotients : {2,3,4}*48
48-fold quotients : {2,5,2}*40
80-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 5, 6)( 7,12)( 8,11)( 9,13)(10,14)(17,18)(19,67)(20,68)(21,70)(22,69)
(23,76)(24,75)(25,77)(26,78)(27,72)(28,71)(29,73)(30,74)(31,79)(32,80)(33,82)
(34,81)(35,51)(36,52)(37,54)(38,53)(39,60)(40,59)(41,61)(42,62)(43,56)(44,55)
(45,57)(46,58)(47,63)(48,64)(49,66)(50,65);;
s2 := ( 3,19)( 4,21)( 5,20)( 6,22)( 7,23)( 8,25)( 9,24)(10,26)(11,33)(12,31)
(13,34)(14,32)(15,28)(16,30)(17,27)(18,29)(35,67)(36,69)(37,68)(38,70)(39,71)
(40,73)(41,72)(42,74)(43,81)(44,79)(45,82)(46,80)(47,76)(48,78)(49,75)(50,77)
(52,53)(56,57)(59,65)(60,63)(61,66)(62,64);;
s3 := ( 3,15)( 4,16)( 5,17)( 6,18)( 7,11)( 8,12)( 9,13)(10,14)(19,31)(20,32)
(21,33)(22,34)(23,27)(24,28)(25,29)(26,30)(35,47)(36,48)(37,49)(38,50)(39,43)
(40,44)(41,45)(42,46)(51,63)(52,64)(53,65)(54,66)(55,59)(56,60)(57,61)(58,62)
(67,79)(68,80)(69,81)(70,82)(71,75)(72,76)(73,77)(74,78);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s1*s3*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(82)!(1,2);
s1 := Sym(82)!( 5, 6)( 7,12)( 8,11)( 9,13)(10,14)(17,18)(19,67)(20,68)(21,70)
(22,69)(23,76)(24,75)(25,77)(26,78)(27,72)(28,71)(29,73)(30,74)(31,79)(32,80)
(33,82)(34,81)(35,51)(36,52)(37,54)(38,53)(39,60)(40,59)(41,61)(42,62)(43,56)
(44,55)(45,57)(46,58)(47,63)(48,64)(49,66)(50,65);
s2 := Sym(82)!( 3,19)( 4,21)( 5,20)( 6,22)( 7,23)( 8,25)( 9,24)(10,26)(11,33)
(12,31)(13,34)(14,32)(15,28)(16,30)(17,27)(18,29)(35,67)(36,69)(37,68)(38,70)
(39,71)(40,73)(41,72)(42,74)(43,81)(44,79)(45,82)(46,80)(47,76)(48,78)(49,75)
(50,77)(52,53)(56,57)(59,65)(60,63)(61,66)(62,64);
s3 := Sym(82)!( 3,15)( 4,16)( 5,17)( 6,18)( 7,11)( 8,12)( 9,13)(10,14)(19,31)
(20,32)(21,33)(22,34)(23,27)(24,28)(25,29)(26,30)(35,47)(36,48)(37,49)(38,50)
(39,43)(40,44)(41,45)(42,46)(51,63)(52,64)(53,65)(54,66)(55,59)(56,60)(57,61)
(58,62)(67,79)(68,80)(69,81)(70,82)(71,75)(72,76)(73,77)(74,78);
poly := sub<Sym(82)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s1*s3*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope