Polytope of Type {2,15,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,15,4}*480
if this polytope has a name.
Group : SmallGroup(480,1199)
Rank : 4
Schlafli Type : {2,15,4}
Number of vertices, edges, etc : 2, 30, 60, 8
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,15,4,2} of size 960
   {2,15,4,4} of size 1920
Vertex Figure Of :
   {2,2,15,4} of size 960
   {3,2,15,4} of size 1440
   {4,2,15,4} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,15,4}*240
   4-fold quotients : {2,15,2}*120
   5-fold quotients : {2,3,4}*96
   10-fold quotients : {2,3,4}*48
   12-fold quotients : {2,5,2}*40
   20-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,15,8}*960, {2,30,4}*960
   3-fold covers : {2,45,4}*1440, {6,15,4}*1440b, {2,15,12}*1440
   4-fold covers : {2,15,8}*1920a, {2,60,4}*1920b, {4,30,4}*1920a, {2,30,4}*1920b, {2,60,4}*1920c, {2,30,8}*1920b, {2,30,8}*1920c, {4,15,4}*1920c
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  5)(  7, 19)(  8, 21)(  9, 20)( 10, 22)( 11, 15)( 12, 17)( 13, 16)
( 14, 18)( 23, 43)( 24, 45)( 25, 44)( 26, 46)( 27, 59)( 28, 61)( 29, 60)
( 30, 62)( 31, 55)( 32, 57)( 33, 56)( 34, 58)( 35, 51)( 36, 53)( 37, 52)
( 38, 54)( 39, 47)( 40, 49)( 41, 48)( 42, 50)( 64, 65)( 67, 79)( 68, 81)
( 69, 80)( 70, 82)( 71, 75)( 72, 77)( 73, 76)( 74, 78)( 83,103)( 84,105)
( 85,104)( 86,106)( 87,119)( 88,121)( 89,120)( 90,122)( 91,115)( 92,117)
( 93,116)( 94,118)( 95,111)( 96,113)( 97,112)( 98,114)( 99,107)(100,109)
(101,108)(102,110);;
s2 := (  3, 27)(  4, 28)(  5, 30)(  6, 29)(  7, 23)(  8, 24)(  9, 26)( 10, 25)
( 11, 39)( 12, 40)( 13, 42)( 14, 41)( 15, 35)( 16, 36)( 17, 38)( 18, 37)
( 19, 31)( 20, 32)( 21, 34)( 22, 33)( 43, 47)( 44, 48)( 45, 50)( 46, 49)
( 51, 59)( 52, 60)( 53, 62)( 54, 61)( 57, 58)( 63, 87)( 64, 88)( 65, 90)
( 66, 89)( 67, 83)( 68, 84)( 69, 86)( 70, 85)( 71, 99)( 72,100)( 73,102)
( 74,101)( 75, 95)( 76, 96)( 77, 98)( 78, 97)( 79, 91)( 80, 92)( 81, 94)
( 82, 93)(103,107)(104,108)(105,110)(106,109)(111,119)(112,120)(113,122)
(114,121)(117,118);;
s3 := (  3, 66)(  4, 65)(  5, 64)(  6, 63)(  7, 70)(  8, 69)(  9, 68)( 10, 67)
( 11, 74)( 12, 73)( 13, 72)( 14, 71)( 15, 78)( 16, 77)( 17, 76)( 18, 75)
( 19, 82)( 20, 81)( 21, 80)( 22, 79)( 23, 86)( 24, 85)( 25, 84)( 26, 83)
( 27, 90)( 28, 89)( 29, 88)( 30, 87)( 31, 94)( 32, 93)( 33, 92)( 34, 91)
( 35, 98)( 36, 97)( 37, 96)( 38, 95)( 39,102)( 40,101)( 41,100)( 42, 99)
( 43,106)( 44,105)( 45,104)( 46,103)( 47,110)( 48,109)( 49,108)( 50,107)
( 51,114)( 52,113)( 53,112)( 54,111)( 55,118)( 56,117)( 57,116)( 58,115)
( 59,122)( 60,121)( 61,120)( 62,119);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(122)!(1,2);
s1 := Sym(122)!(  4,  5)(  7, 19)(  8, 21)(  9, 20)( 10, 22)( 11, 15)( 12, 17)
( 13, 16)( 14, 18)( 23, 43)( 24, 45)( 25, 44)( 26, 46)( 27, 59)( 28, 61)
( 29, 60)( 30, 62)( 31, 55)( 32, 57)( 33, 56)( 34, 58)( 35, 51)( 36, 53)
( 37, 52)( 38, 54)( 39, 47)( 40, 49)( 41, 48)( 42, 50)( 64, 65)( 67, 79)
( 68, 81)( 69, 80)( 70, 82)( 71, 75)( 72, 77)( 73, 76)( 74, 78)( 83,103)
( 84,105)( 85,104)( 86,106)( 87,119)( 88,121)( 89,120)( 90,122)( 91,115)
( 92,117)( 93,116)( 94,118)( 95,111)( 96,113)( 97,112)( 98,114)( 99,107)
(100,109)(101,108)(102,110);
s2 := Sym(122)!(  3, 27)(  4, 28)(  5, 30)(  6, 29)(  7, 23)(  8, 24)(  9, 26)
( 10, 25)( 11, 39)( 12, 40)( 13, 42)( 14, 41)( 15, 35)( 16, 36)( 17, 38)
( 18, 37)( 19, 31)( 20, 32)( 21, 34)( 22, 33)( 43, 47)( 44, 48)( 45, 50)
( 46, 49)( 51, 59)( 52, 60)( 53, 62)( 54, 61)( 57, 58)( 63, 87)( 64, 88)
( 65, 90)( 66, 89)( 67, 83)( 68, 84)( 69, 86)( 70, 85)( 71, 99)( 72,100)
( 73,102)( 74,101)( 75, 95)( 76, 96)( 77, 98)( 78, 97)( 79, 91)( 80, 92)
( 81, 94)( 82, 93)(103,107)(104,108)(105,110)(106,109)(111,119)(112,120)
(113,122)(114,121)(117,118);
s3 := Sym(122)!(  3, 66)(  4, 65)(  5, 64)(  6, 63)(  7, 70)(  8, 69)(  9, 68)
( 10, 67)( 11, 74)( 12, 73)( 13, 72)( 14, 71)( 15, 78)( 16, 77)( 17, 76)
( 18, 75)( 19, 82)( 20, 81)( 21, 80)( 22, 79)( 23, 86)( 24, 85)( 25, 84)
( 26, 83)( 27, 90)( 28, 89)( 29, 88)( 30, 87)( 31, 94)( 32, 93)( 33, 92)
( 34, 91)( 35, 98)( 36, 97)( 37, 96)( 38, 95)( 39,102)( 40,101)( 41,100)
( 42, 99)( 43,106)( 44,105)( 45,104)( 46,103)( 47,110)( 48,109)( 49,108)
( 50,107)( 51,114)( 52,113)( 53,112)( 54,111)( 55,118)( 56,117)( 57,116)
( 58,115)( 59,122)( 60,121)( 61,120)( 62,119);
poly := sub<Sym(122)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope