include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {120,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {120,4,2}*1920c
if this polytope has a name.
Group : SmallGroup(1920,239539)
Rank : 4
Schlafli Type : {120,4,2}
Number of vertices, edges, etc : 120, 240, 4, 2
Order of s0s1s2s3 : 120
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {60,4,2}*960b
4-fold quotients : {30,4,2}*480b
5-fold quotients : {24,4,2}*384c
8-fold quotients : {15,4,2}*240
10-fold quotients : {12,4,2}*192b
20-fold quotients : {6,4,2}*96c
40-fold quotients : {3,4,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 17)( 6, 19)( 7, 18)( 8, 20)( 9, 13)( 10, 15)( 11, 14)
( 12, 16)( 21, 41)( 22, 43)( 23, 42)( 24, 44)( 25, 57)( 26, 59)( 27, 58)
( 28, 60)( 29, 53)( 30, 55)( 31, 54)( 32, 56)( 33, 49)( 34, 51)( 35, 50)
( 36, 52)( 37, 45)( 38, 47)( 39, 46)( 40, 48)( 62, 63)( 65, 77)( 66, 79)
( 67, 78)( 68, 80)( 69, 73)( 70, 75)( 71, 74)( 72, 76)( 81,101)( 82,103)
( 83,102)( 84,104)( 85,117)( 86,119)( 87,118)( 88,120)( 89,113)( 90,115)
( 91,114)( 92,116)( 93,109)( 94,111)( 95,110)( 96,112)( 97,105)( 98,107)
( 99,106)(100,108)(121,181)(122,183)(123,182)(124,184)(125,197)(126,199)
(127,198)(128,200)(129,193)(130,195)(131,194)(132,196)(133,189)(134,191)
(135,190)(136,192)(137,185)(138,187)(139,186)(140,188)(141,221)(142,223)
(143,222)(144,224)(145,237)(146,239)(147,238)(148,240)(149,233)(150,235)
(151,234)(152,236)(153,229)(154,231)(155,230)(156,232)(157,225)(158,227)
(159,226)(160,228)(161,201)(162,203)(163,202)(164,204)(165,217)(166,219)
(167,218)(168,220)(169,213)(170,215)(171,214)(172,216)(173,209)(174,211)
(175,210)(176,212)(177,205)(178,207)(179,206)(180,208)(241,361)(242,363)
(243,362)(244,364)(245,377)(246,379)(247,378)(248,380)(249,373)(250,375)
(251,374)(252,376)(253,369)(254,371)(255,370)(256,372)(257,365)(258,367)
(259,366)(260,368)(261,401)(262,403)(263,402)(264,404)(265,417)(266,419)
(267,418)(268,420)(269,413)(270,415)(271,414)(272,416)(273,409)(274,411)
(275,410)(276,412)(277,405)(278,407)(279,406)(280,408)(281,381)(282,383)
(283,382)(284,384)(285,397)(286,399)(287,398)(288,400)(289,393)(290,395)
(291,394)(292,396)(293,389)(294,391)(295,390)(296,392)(297,385)(298,387)
(299,386)(300,388)(301,421)(302,423)(303,422)(304,424)(305,437)(306,439)
(307,438)(308,440)(309,433)(310,435)(311,434)(312,436)(313,429)(314,431)
(315,430)(316,432)(317,425)(318,427)(319,426)(320,428)(321,461)(322,463)
(323,462)(324,464)(325,477)(326,479)(327,478)(328,480)(329,473)(330,475)
(331,474)(332,476)(333,469)(334,471)(335,470)(336,472)(337,465)(338,467)
(339,466)(340,468)(341,441)(342,443)(343,442)(344,444)(345,457)(346,459)
(347,458)(348,460)(349,453)(350,455)(351,454)(352,456)(353,449)(354,451)
(355,450)(356,452)(357,445)(358,447)(359,446)(360,448);;
s1 := ( 1,265)( 2,266)( 3,268)( 4,267)( 5,261)( 6,262)( 7,264)( 8,263)
( 9,277)( 10,278)( 11,280)( 12,279)( 13,273)( 14,274)( 15,276)( 16,275)
( 17,269)( 18,270)( 19,272)( 20,271)( 21,245)( 22,246)( 23,248)( 24,247)
( 25,241)( 26,242)( 27,244)( 28,243)( 29,257)( 30,258)( 31,260)( 32,259)
( 33,253)( 34,254)( 35,256)( 36,255)( 37,249)( 38,250)( 39,252)( 40,251)
( 41,285)( 42,286)( 43,288)( 44,287)( 45,281)( 46,282)( 47,284)( 48,283)
( 49,297)( 50,298)( 51,300)( 52,299)( 53,293)( 54,294)( 55,296)( 56,295)
( 57,289)( 58,290)( 59,292)( 60,291)( 61,325)( 62,326)( 63,328)( 64,327)
( 65,321)( 66,322)( 67,324)( 68,323)( 69,337)( 70,338)( 71,340)( 72,339)
( 73,333)( 74,334)( 75,336)( 76,335)( 77,329)( 78,330)( 79,332)( 80,331)
( 81,305)( 82,306)( 83,308)( 84,307)( 85,301)( 86,302)( 87,304)( 88,303)
( 89,317)( 90,318)( 91,320)( 92,319)( 93,313)( 94,314)( 95,316)( 96,315)
( 97,309)( 98,310)( 99,312)(100,311)(101,345)(102,346)(103,348)(104,347)
(105,341)(106,342)(107,344)(108,343)(109,357)(110,358)(111,360)(112,359)
(113,353)(114,354)(115,356)(116,355)(117,349)(118,350)(119,352)(120,351)
(121,445)(122,446)(123,448)(124,447)(125,441)(126,442)(127,444)(128,443)
(129,457)(130,458)(131,460)(132,459)(133,453)(134,454)(135,456)(136,455)
(137,449)(138,450)(139,452)(140,451)(141,425)(142,426)(143,428)(144,427)
(145,421)(146,422)(147,424)(148,423)(149,437)(150,438)(151,440)(152,439)
(153,433)(154,434)(155,436)(156,435)(157,429)(158,430)(159,432)(160,431)
(161,465)(162,466)(163,468)(164,467)(165,461)(166,462)(167,464)(168,463)
(169,477)(170,478)(171,480)(172,479)(173,473)(174,474)(175,476)(176,475)
(177,469)(178,470)(179,472)(180,471)(181,385)(182,386)(183,388)(184,387)
(185,381)(186,382)(187,384)(188,383)(189,397)(190,398)(191,400)(192,399)
(193,393)(194,394)(195,396)(196,395)(197,389)(198,390)(199,392)(200,391)
(201,365)(202,366)(203,368)(204,367)(205,361)(206,362)(207,364)(208,363)
(209,377)(210,378)(211,380)(212,379)(213,373)(214,374)(215,376)(216,375)
(217,369)(218,370)(219,372)(220,371)(221,405)(222,406)(223,408)(224,407)
(225,401)(226,402)(227,404)(228,403)(229,417)(230,418)(231,420)(232,419)
(233,413)(234,414)(235,416)(236,415)(237,409)(238,410)(239,412)(240,411);;
s2 := ( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9, 12)( 10, 11)( 13, 16)( 14, 15)
( 17, 20)( 18, 19)( 21, 24)( 22, 23)( 25, 28)( 26, 27)( 29, 32)( 30, 31)
( 33, 36)( 34, 35)( 37, 40)( 38, 39)( 41, 44)( 42, 43)( 45, 48)( 46, 47)
( 49, 52)( 50, 51)( 53, 56)( 54, 55)( 57, 60)( 58, 59)( 61, 64)( 62, 63)
( 65, 68)( 66, 67)( 69, 72)( 70, 71)( 73, 76)( 74, 75)( 77, 80)( 78, 79)
( 81, 84)( 82, 83)( 85, 88)( 86, 87)( 89, 92)( 90, 91)( 93, 96)( 94, 95)
( 97,100)( 98, 99)(101,104)(102,103)(105,108)(106,107)(109,112)(110,111)
(113,116)(114,115)(117,120)(118,119)(121,124)(122,123)(125,128)(126,127)
(129,132)(130,131)(133,136)(134,135)(137,140)(138,139)(141,144)(142,143)
(145,148)(146,147)(149,152)(150,151)(153,156)(154,155)(157,160)(158,159)
(161,164)(162,163)(165,168)(166,167)(169,172)(170,171)(173,176)(174,175)
(177,180)(178,179)(181,184)(182,183)(185,188)(186,187)(189,192)(190,191)
(193,196)(194,195)(197,200)(198,199)(201,204)(202,203)(205,208)(206,207)
(209,212)(210,211)(213,216)(214,215)(217,220)(218,219)(221,224)(222,223)
(225,228)(226,227)(229,232)(230,231)(233,236)(234,235)(237,240)(238,239)
(241,244)(242,243)(245,248)(246,247)(249,252)(250,251)(253,256)(254,255)
(257,260)(258,259)(261,264)(262,263)(265,268)(266,267)(269,272)(270,271)
(273,276)(274,275)(277,280)(278,279)(281,284)(282,283)(285,288)(286,287)
(289,292)(290,291)(293,296)(294,295)(297,300)(298,299)(301,304)(302,303)
(305,308)(306,307)(309,312)(310,311)(313,316)(314,315)(317,320)(318,319)
(321,324)(322,323)(325,328)(326,327)(329,332)(330,331)(333,336)(334,335)
(337,340)(338,339)(341,344)(342,343)(345,348)(346,347)(349,352)(350,351)
(353,356)(354,355)(357,360)(358,359)(361,364)(362,363)(365,368)(366,367)
(369,372)(370,371)(373,376)(374,375)(377,380)(378,379)(381,384)(382,383)
(385,388)(386,387)(389,392)(390,391)(393,396)(394,395)(397,400)(398,399)
(401,404)(402,403)(405,408)(406,407)(409,412)(410,411)(413,416)(414,415)
(417,420)(418,419)(421,424)(422,423)(425,428)(426,427)(429,432)(430,431)
(433,436)(434,435)(437,440)(438,439)(441,444)(442,443)(445,448)(446,447)
(449,452)(450,451)(453,456)(454,455)(457,460)(458,459)(461,464)(462,463)
(465,468)(466,467)(469,472)(470,471)(473,476)(474,475)(477,480)(478,479);;
s3 := (481,482);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s2*s1*s0*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(482)!( 2, 3)( 5, 17)( 6, 19)( 7, 18)( 8, 20)( 9, 13)( 10, 15)
( 11, 14)( 12, 16)( 21, 41)( 22, 43)( 23, 42)( 24, 44)( 25, 57)( 26, 59)
( 27, 58)( 28, 60)( 29, 53)( 30, 55)( 31, 54)( 32, 56)( 33, 49)( 34, 51)
( 35, 50)( 36, 52)( 37, 45)( 38, 47)( 39, 46)( 40, 48)( 62, 63)( 65, 77)
( 66, 79)( 67, 78)( 68, 80)( 69, 73)( 70, 75)( 71, 74)( 72, 76)( 81,101)
( 82,103)( 83,102)( 84,104)( 85,117)( 86,119)( 87,118)( 88,120)( 89,113)
( 90,115)( 91,114)( 92,116)( 93,109)( 94,111)( 95,110)( 96,112)( 97,105)
( 98,107)( 99,106)(100,108)(121,181)(122,183)(123,182)(124,184)(125,197)
(126,199)(127,198)(128,200)(129,193)(130,195)(131,194)(132,196)(133,189)
(134,191)(135,190)(136,192)(137,185)(138,187)(139,186)(140,188)(141,221)
(142,223)(143,222)(144,224)(145,237)(146,239)(147,238)(148,240)(149,233)
(150,235)(151,234)(152,236)(153,229)(154,231)(155,230)(156,232)(157,225)
(158,227)(159,226)(160,228)(161,201)(162,203)(163,202)(164,204)(165,217)
(166,219)(167,218)(168,220)(169,213)(170,215)(171,214)(172,216)(173,209)
(174,211)(175,210)(176,212)(177,205)(178,207)(179,206)(180,208)(241,361)
(242,363)(243,362)(244,364)(245,377)(246,379)(247,378)(248,380)(249,373)
(250,375)(251,374)(252,376)(253,369)(254,371)(255,370)(256,372)(257,365)
(258,367)(259,366)(260,368)(261,401)(262,403)(263,402)(264,404)(265,417)
(266,419)(267,418)(268,420)(269,413)(270,415)(271,414)(272,416)(273,409)
(274,411)(275,410)(276,412)(277,405)(278,407)(279,406)(280,408)(281,381)
(282,383)(283,382)(284,384)(285,397)(286,399)(287,398)(288,400)(289,393)
(290,395)(291,394)(292,396)(293,389)(294,391)(295,390)(296,392)(297,385)
(298,387)(299,386)(300,388)(301,421)(302,423)(303,422)(304,424)(305,437)
(306,439)(307,438)(308,440)(309,433)(310,435)(311,434)(312,436)(313,429)
(314,431)(315,430)(316,432)(317,425)(318,427)(319,426)(320,428)(321,461)
(322,463)(323,462)(324,464)(325,477)(326,479)(327,478)(328,480)(329,473)
(330,475)(331,474)(332,476)(333,469)(334,471)(335,470)(336,472)(337,465)
(338,467)(339,466)(340,468)(341,441)(342,443)(343,442)(344,444)(345,457)
(346,459)(347,458)(348,460)(349,453)(350,455)(351,454)(352,456)(353,449)
(354,451)(355,450)(356,452)(357,445)(358,447)(359,446)(360,448);
s1 := Sym(482)!( 1,265)( 2,266)( 3,268)( 4,267)( 5,261)( 6,262)( 7,264)
( 8,263)( 9,277)( 10,278)( 11,280)( 12,279)( 13,273)( 14,274)( 15,276)
( 16,275)( 17,269)( 18,270)( 19,272)( 20,271)( 21,245)( 22,246)( 23,248)
( 24,247)( 25,241)( 26,242)( 27,244)( 28,243)( 29,257)( 30,258)( 31,260)
( 32,259)( 33,253)( 34,254)( 35,256)( 36,255)( 37,249)( 38,250)( 39,252)
( 40,251)( 41,285)( 42,286)( 43,288)( 44,287)( 45,281)( 46,282)( 47,284)
( 48,283)( 49,297)( 50,298)( 51,300)( 52,299)( 53,293)( 54,294)( 55,296)
( 56,295)( 57,289)( 58,290)( 59,292)( 60,291)( 61,325)( 62,326)( 63,328)
( 64,327)( 65,321)( 66,322)( 67,324)( 68,323)( 69,337)( 70,338)( 71,340)
( 72,339)( 73,333)( 74,334)( 75,336)( 76,335)( 77,329)( 78,330)( 79,332)
( 80,331)( 81,305)( 82,306)( 83,308)( 84,307)( 85,301)( 86,302)( 87,304)
( 88,303)( 89,317)( 90,318)( 91,320)( 92,319)( 93,313)( 94,314)( 95,316)
( 96,315)( 97,309)( 98,310)( 99,312)(100,311)(101,345)(102,346)(103,348)
(104,347)(105,341)(106,342)(107,344)(108,343)(109,357)(110,358)(111,360)
(112,359)(113,353)(114,354)(115,356)(116,355)(117,349)(118,350)(119,352)
(120,351)(121,445)(122,446)(123,448)(124,447)(125,441)(126,442)(127,444)
(128,443)(129,457)(130,458)(131,460)(132,459)(133,453)(134,454)(135,456)
(136,455)(137,449)(138,450)(139,452)(140,451)(141,425)(142,426)(143,428)
(144,427)(145,421)(146,422)(147,424)(148,423)(149,437)(150,438)(151,440)
(152,439)(153,433)(154,434)(155,436)(156,435)(157,429)(158,430)(159,432)
(160,431)(161,465)(162,466)(163,468)(164,467)(165,461)(166,462)(167,464)
(168,463)(169,477)(170,478)(171,480)(172,479)(173,473)(174,474)(175,476)
(176,475)(177,469)(178,470)(179,472)(180,471)(181,385)(182,386)(183,388)
(184,387)(185,381)(186,382)(187,384)(188,383)(189,397)(190,398)(191,400)
(192,399)(193,393)(194,394)(195,396)(196,395)(197,389)(198,390)(199,392)
(200,391)(201,365)(202,366)(203,368)(204,367)(205,361)(206,362)(207,364)
(208,363)(209,377)(210,378)(211,380)(212,379)(213,373)(214,374)(215,376)
(216,375)(217,369)(218,370)(219,372)(220,371)(221,405)(222,406)(223,408)
(224,407)(225,401)(226,402)(227,404)(228,403)(229,417)(230,418)(231,420)
(232,419)(233,413)(234,414)(235,416)(236,415)(237,409)(238,410)(239,412)
(240,411);
s2 := Sym(482)!( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9, 12)( 10, 11)( 13, 16)
( 14, 15)( 17, 20)( 18, 19)( 21, 24)( 22, 23)( 25, 28)( 26, 27)( 29, 32)
( 30, 31)( 33, 36)( 34, 35)( 37, 40)( 38, 39)( 41, 44)( 42, 43)( 45, 48)
( 46, 47)( 49, 52)( 50, 51)( 53, 56)( 54, 55)( 57, 60)( 58, 59)( 61, 64)
( 62, 63)( 65, 68)( 66, 67)( 69, 72)( 70, 71)( 73, 76)( 74, 75)( 77, 80)
( 78, 79)( 81, 84)( 82, 83)( 85, 88)( 86, 87)( 89, 92)( 90, 91)( 93, 96)
( 94, 95)( 97,100)( 98, 99)(101,104)(102,103)(105,108)(106,107)(109,112)
(110,111)(113,116)(114,115)(117,120)(118,119)(121,124)(122,123)(125,128)
(126,127)(129,132)(130,131)(133,136)(134,135)(137,140)(138,139)(141,144)
(142,143)(145,148)(146,147)(149,152)(150,151)(153,156)(154,155)(157,160)
(158,159)(161,164)(162,163)(165,168)(166,167)(169,172)(170,171)(173,176)
(174,175)(177,180)(178,179)(181,184)(182,183)(185,188)(186,187)(189,192)
(190,191)(193,196)(194,195)(197,200)(198,199)(201,204)(202,203)(205,208)
(206,207)(209,212)(210,211)(213,216)(214,215)(217,220)(218,219)(221,224)
(222,223)(225,228)(226,227)(229,232)(230,231)(233,236)(234,235)(237,240)
(238,239)(241,244)(242,243)(245,248)(246,247)(249,252)(250,251)(253,256)
(254,255)(257,260)(258,259)(261,264)(262,263)(265,268)(266,267)(269,272)
(270,271)(273,276)(274,275)(277,280)(278,279)(281,284)(282,283)(285,288)
(286,287)(289,292)(290,291)(293,296)(294,295)(297,300)(298,299)(301,304)
(302,303)(305,308)(306,307)(309,312)(310,311)(313,316)(314,315)(317,320)
(318,319)(321,324)(322,323)(325,328)(326,327)(329,332)(330,331)(333,336)
(334,335)(337,340)(338,339)(341,344)(342,343)(345,348)(346,347)(349,352)
(350,351)(353,356)(354,355)(357,360)(358,359)(361,364)(362,363)(365,368)
(366,367)(369,372)(370,371)(373,376)(374,375)(377,380)(378,379)(381,384)
(382,383)(385,388)(386,387)(389,392)(390,391)(393,396)(394,395)(397,400)
(398,399)(401,404)(402,403)(405,408)(406,407)(409,412)(410,411)(413,416)
(414,415)(417,420)(418,419)(421,424)(422,423)(425,428)(426,427)(429,432)
(430,431)(433,436)(434,435)(437,440)(438,439)(441,444)(442,443)(445,448)
(446,447)(449,452)(450,451)(453,456)(454,455)(457,460)(458,459)(461,464)
(462,463)(465,468)(466,467)(469,472)(470,471)(473,476)(474,475)(477,480)
(478,479);
s3 := Sym(482)!(481,482);
poly := sub<Sym(482)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s1*s0*s2*s1*s2*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope