Polytope of Type {4,15,2,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,15,2,8}*1920
if this polytope has a name.
Group : SmallGroup(1920,239556)
Rank : 5
Schlafli Type : {4,15,2,8}
Number of vertices, edges, etc : 4, 30, 15, 8, 8
Order of s0s1s2s3s4 : 120
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,15,2,4}*960
   4-fold quotients : {4,15,2,2}*480
   5-fold quotients : {4,3,2,8}*384
   10-fold quotients : {4,3,2,4}*192
   20-fold quotients : {4,3,2,2}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 4)( 2, 6)( 3, 8)( 5,11)( 7,15)( 9,10)(12,16)(13,14)(17,20)(18,19);;
s1 := ( 2, 3)( 4, 9)( 5, 7)( 6,12)( 8,13)(11,17)(14,16)(15,18)(19,20);;
s2 := ( 1, 2)( 3, 5)( 4, 6)( 8,11)( 9,14)(10,13)(12,19)(16,18)(17,20);;
s3 := (22,23)(24,25)(26,27);;
s4 := (21,22)(23,24)(25,26)(27,28);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(28)!( 1, 4)( 2, 6)( 3, 8)( 5,11)( 7,15)( 9,10)(12,16)(13,14)(17,20)
(18,19);
s1 := Sym(28)!( 2, 3)( 4, 9)( 5, 7)( 6,12)( 8,13)(11,17)(14,16)(15,18)(19,20);
s2 := Sym(28)!( 1, 2)( 3, 5)( 4, 6)( 8,11)( 9,14)(10,13)(12,19)(16,18)(17,20);
s3 := Sym(28)!(22,23)(24,25)(26,27);
s4 := Sym(28)!(21,22)(23,24)(25,26)(27,28);
poly := sub<Sym(28)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope