Polytope of Type {2,4,12,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,12,10}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240141)
Rank : 5
Schlafli Type : {2,4,12,10}
Number of vertices, edges, etc : 2, 4, 24, 60, 10
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,4,6,10}*960b
   5-fold quotients : {2,4,12,2}*384b
   10-fold quotients : {2,4,6,2}*192c
   20-fold quotients : {2,4,3,2}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  3,  5)(  4,  6)(  7,  9)(  8, 10)( 11, 13)( 12, 14)( 15, 17)( 16, 18)
( 19, 21)( 20, 22)( 23, 25)( 24, 26)( 27, 29)( 28, 30)( 31, 33)( 32, 34)
( 35, 37)( 36, 38)( 39, 41)( 40, 42)( 43, 45)( 44, 46)( 47, 49)( 48, 50)
( 51, 53)( 52, 54)( 55, 57)( 56, 58)( 59, 61)( 60, 62)( 63, 65)( 64, 66)
( 67, 69)( 68, 70)( 71, 73)( 72, 74)( 75, 77)( 76, 78)( 79, 81)( 80, 82)
( 83, 85)( 84, 86)( 87, 89)( 88, 90)( 91, 93)( 92, 94)( 95, 97)( 96, 98)
( 99,101)(100,102)(103,105)(104,106)(107,109)(108,110)(111,113)(112,114)
(115,117)(116,118)(119,121)(120,122)(123,125)(124,126)(127,129)(128,130)
(131,133)(132,134)(135,137)(136,138)(139,141)(140,142)(143,145)(144,146)
(147,149)(148,150)(151,153)(152,154)(155,157)(156,158)(159,161)(160,162)
(163,165)(164,166)(167,169)(168,170)(171,173)(172,174)(175,177)(176,178)
(179,181)(180,182)(183,185)(184,186)(187,189)(188,190)(191,193)(192,194)
(195,197)(196,198)(199,201)(200,202)(203,205)(204,206)(207,209)(208,210)
(211,213)(212,214)(215,217)(216,218)(219,221)(220,222)(223,225)(224,226)
(227,229)(228,230)(231,233)(232,234)(235,237)(236,238)(239,241)(240,242);;
s2 := (  4,  5)(  8,  9)( 12, 13)( 16, 17)( 20, 21)( 23, 43)( 24, 45)( 25, 44)
( 26, 46)( 27, 47)( 28, 49)( 29, 48)( 30, 50)( 31, 51)( 32, 53)( 33, 52)
( 34, 54)( 35, 55)( 36, 57)( 37, 56)( 38, 58)( 39, 59)( 40, 61)( 41, 60)
( 42, 62)( 64, 65)( 68, 69)( 72, 73)( 76, 77)( 80, 81)( 83,103)( 84,105)
( 85,104)( 86,106)( 87,107)( 88,109)( 89,108)( 90,110)( 91,111)( 92,113)
( 93,112)( 94,114)( 95,115)( 96,117)( 97,116)( 98,118)( 99,119)(100,121)
(101,120)(102,122)(123,183)(124,185)(125,184)(126,186)(127,187)(128,189)
(129,188)(130,190)(131,191)(132,193)(133,192)(134,194)(135,195)(136,197)
(137,196)(138,198)(139,199)(140,201)(141,200)(142,202)(143,223)(144,225)
(145,224)(146,226)(147,227)(148,229)(149,228)(150,230)(151,231)(152,233)
(153,232)(154,234)(155,235)(156,237)(157,236)(158,238)(159,239)(160,241)
(161,240)(162,242)(163,203)(164,205)(165,204)(166,206)(167,207)(168,209)
(169,208)(170,210)(171,211)(172,213)(173,212)(174,214)(175,215)(176,217)
(177,216)(178,218)(179,219)(180,221)(181,220)(182,222);;
s3 := (  3,163)(  4,166)(  5,165)(  6,164)(  7,179)(  8,182)(  9,181)( 10,180)
( 11,175)( 12,178)( 13,177)( 14,176)( 15,171)( 16,174)( 17,173)( 18,172)
( 19,167)( 20,170)( 21,169)( 22,168)( 23,143)( 24,146)( 25,145)( 26,144)
( 27,159)( 28,162)( 29,161)( 30,160)( 31,155)( 32,158)( 33,157)( 34,156)
( 35,151)( 36,154)( 37,153)( 38,152)( 39,147)( 40,150)( 41,149)( 42,148)
( 43,123)( 44,126)( 45,125)( 46,124)( 47,139)( 48,142)( 49,141)( 50,140)
( 51,135)( 52,138)( 53,137)( 54,136)( 55,131)( 56,134)( 57,133)( 58,132)
( 59,127)( 60,130)( 61,129)( 62,128)( 63,223)( 64,226)( 65,225)( 66,224)
( 67,239)( 68,242)( 69,241)( 70,240)( 71,235)( 72,238)( 73,237)( 74,236)
( 75,231)( 76,234)( 77,233)( 78,232)( 79,227)( 80,230)( 81,229)( 82,228)
( 83,203)( 84,206)( 85,205)( 86,204)( 87,219)( 88,222)( 89,221)( 90,220)
( 91,215)( 92,218)( 93,217)( 94,216)( 95,211)( 96,214)( 97,213)( 98,212)
( 99,207)(100,210)(101,209)(102,208)(103,183)(104,186)(105,185)(106,184)
(107,199)(108,202)(109,201)(110,200)(111,195)(112,198)(113,197)(114,196)
(115,191)(116,194)(117,193)(118,192)(119,187)(120,190)(121,189)(122,188);;
s4 := (  3,  7)(  4,  8)(  5,  9)(  6, 10)( 11, 19)( 12, 20)( 13, 21)( 14, 22)
( 23, 27)( 24, 28)( 25, 29)( 26, 30)( 31, 39)( 32, 40)( 33, 41)( 34, 42)
( 43, 47)( 44, 48)( 45, 49)( 46, 50)( 51, 59)( 52, 60)( 53, 61)( 54, 62)
( 63, 67)( 64, 68)( 65, 69)( 66, 70)( 71, 79)( 72, 80)( 73, 81)( 74, 82)
( 83, 87)( 84, 88)( 85, 89)( 86, 90)( 91, 99)( 92,100)( 93,101)( 94,102)
(103,107)(104,108)(105,109)(106,110)(111,119)(112,120)(113,121)(114,122)
(123,127)(124,128)(125,129)(126,130)(131,139)(132,140)(133,141)(134,142)
(143,147)(144,148)(145,149)(146,150)(151,159)(152,160)(153,161)(154,162)
(163,167)(164,168)(165,169)(166,170)(171,179)(172,180)(173,181)(174,182)
(183,187)(184,188)(185,189)(186,190)(191,199)(192,200)(193,201)(194,202)
(203,207)(204,208)(205,209)(206,210)(211,219)(212,220)(213,221)(214,222)
(223,227)(224,228)(225,229)(226,230)(231,239)(232,240)(233,241)(234,242);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s2*s3*s4*s3*s2*s3*s4*s3, 
s1*s2*s3*s2*s1*s2*s3*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(242)!(1,2);
s1 := Sym(242)!(  3,  5)(  4,  6)(  7,  9)(  8, 10)( 11, 13)( 12, 14)( 15, 17)
( 16, 18)( 19, 21)( 20, 22)( 23, 25)( 24, 26)( 27, 29)( 28, 30)( 31, 33)
( 32, 34)( 35, 37)( 36, 38)( 39, 41)( 40, 42)( 43, 45)( 44, 46)( 47, 49)
( 48, 50)( 51, 53)( 52, 54)( 55, 57)( 56, 58)( 59, 61)( 60, 62)( 63, 65)
( 64, 66)( 67, 69)( 68, 70)( 71, 73)( 72, 74)( 75, 77)( 76, 78)( 79, 81)
( 80, 82)( 83, 85)( 84, 86)( 87, 89)( 88, 90)( 91, 93)( 92, 94)( 95, 97)
( 96, 98)( 99,101)(100,102)(103,105)(104,106)(107,109)(108,110)(111,113)
(112,114)(115,117)(116,118)(119,121)(120,122)(123,125)(124,126)(127,129)
(128,130)(131,133)(132,134)(135,137)(136,138)(139,141)(140,142)(143,145)
(144,146)(147,149)(148,150)(151,153)(152,154)(155,157)(156,158)(159,161)
(160,162)(163,165)(164,166)(167,169)(168,170)(171,173)(172,174)(175,177)
(176,178)(179,181)(180,182)(183,185)(184,186)(187,189)(188,190)(191,193)
(192,194)(195,197)(196,198)(199,201)(200,202)(203,205)(204,206)(207,209)
(208,210)(211,213)(212,214)(215,217)(216,218)(219,221)(220,222)(223,225)
(224,226)(227,229)(228,230)(231,233)(232,234)(235,237)(236,238)(239,241)
(240,242);
s2 := Sym(242)!(  4,  5)(  8,  9)( 12, 13)( 16, 17)( 20, 21)( 23, 43)( 24, 45)
( 25, 44)( 26, 46)( 27, 47)( 28, 49)( 29, 48)( 30, 50)( 31, 51)( 32, 53)
( 33, 52)( 34, 54)( 35, 55)( 36, 57)( 37, 56)( 38, 58)( 39, 59)( 40, 61)
( 41, 60)( 42, 62)( 64, 65)( 68, 69)( 72, 73)( 76, 77)( 80, 81)( 83,103)
( 84,105)( 85,104)( 86,106)( 87,107)( 88,109)( 89,108)( 90,110)( 91,111)
( 92,113)( 93,112)( 94,114)( 95,115)( 96,117)( 97,116)( 98,118)( 99,119)
(100,121)(101,120)(102,122)(123,183)(124,185)(125,184)(126,186)(127,187)
(128,189)(129,188)(130,190)(131,191)(132,193)(133,192)(134,194)(135,195)
(136,197)(137,196)(138,198)(139,199)(140,201)(141,200)(142,202)(143,223)
(144,225)(145,224)(146,226)(147,227)(148,229)(149,228)(150,230)(151,231)
(152,233)(153,232)(154,234)(155,235)(156,237)(157,236)(158,238)(159,239)
(160,241)(161,240)(162,242)(163,203)(164,205)(165,204)(166,206)(167,207)
(168,209)(169,208)(170,210)(171,211)(172,213)(173,212)(174,214)(175,215)
(176,217)(177,216)(178,218)(179,219)(180,221)(181,220)(182,222);
s3 := Sym(242)!(  3,163)(  4,166)(  5,165)(  6,164)(  7,179)(  8,182)(  9,181)
( 10,180)( 11,175)( 12,178)( 13,177)( 14,176)( 15,171)( 16,174)( 17,173)
( 18,172)( 19,167)( 20,170)( 21,169)( 22,168)( 23,143)( 24,146)( 25,145)
( 26,144)( 27,159)( 28,162)( 29,161)( 30,160)( 31,155)( 32,158)( 33,157)
( 34,156)( 35,151)( 36,154)( 37,153)( 38,152)( 39,147)( 40,150)( 41,149)
( 42,148)( 43,123)( 44,126)( 45,125)( 46,124)( 47,139)( 48,142)( 49,141)
( 50,140)( 51,135)( 52,138)( 53,137)( 54,136)( 55,131)( 56,134)( 57,133)
( 58,132)( 59,127)( 60,130)( 61,129)( 62,128)( 63,223)( 64,226)( 65,225)
( 66,224)( 67,239)( 68,242)( 69,241)( 70,240)( 71,235)( 72,238)( 73,237)
( 74,236)( 75,231)( 76,234)( 77,233)( 78,232)( 79,227)( 80,230)( 81,229)
( 82,228)( 83,203)( 84,206)( 85,205)( 86,204)( 87,219)( 88,222)( 89,221)
( 90,220)( 91,215)( 92,218)( 93,217)( 94,216)( 95,211)( 96,214)( 97,213)
( 98,212)( 99,207)(100,210)(101,209)(102,208)(103,183)(104,186)(105,185)
(106,184)(107,199)(108,202)(109,201)(110,200)(111,195)(112,198)(113,197)
(114,196)(115,191)(116,194)(117,193)(118,192)(119,187)(120,190)(121,189)
(122,188);
s4 := Sym(242)!(  3,  7)(  4,  8)(  5,  9)(  6, 10)( 11, 19)( 12, 20)( 13, 21)
( 14, 22)( 23, 27)( 24, 28)( 25, 29)( 26, 30)( 31, 39)( 32, 40)( 33, 41)
( 34, 42)( 43, 47)( 44, 48)( 45, 49)( 46, 50)( 51, 59)( 52, 60)( 53, 61)
( 54, 62)( 63, 67)( 64, 68)( 65, 69)( 66, 70)( 71, 79)( 72, 80)( 73, 81)
( 74, 82)( 83, 87)( 84, 88)( 85, 89)( 86, 90)( 91, 99)( 92,100)( 93,101)
( 94,102)(103,107)(104,108)(105,109)(106,110)(111,119)(112,120)(113,121)
(114,122)(123,127)(124,128)(125,129)(126,130)(131,139)(132,140)(133,141)
(134,142)(143,147)(144,148)(145,149)(146,150)(151,159)(152,160)(153,161)
(154,162)(163,167)(164,168)(165,169)(166,170)(171,179)(172,180)(173,181)
(174,182)(183,187)(184,188)(185,189)(186,190)(191,199)(192,200)(193,201)
(194,202)(203,207)(204,208)(205,209)(206,210)(211,219)(212,220)(213,221)
(214,222)(223,227)(224,228)(225,229)(226,230)(231,239)(232,240)(233,241)
(234,242);
poly := sub<Sym(242)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s4*s3*s2*s3*s4*s3, s1*s2*s3*s2*s1*s2*s3*s1*s2, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope