Polytope of Type {2,4,12,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,12,2}*384b
if this polytope has a name.
Group : SmallGroup(384,20049)
Rank : 5
Schlafli Type : {2,4,12,2}
Number of vertices, edges, etc : 2, 4, 24, 12, 2
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,4,12,2,2} of size 768
   {2,4,12,2,3} of size 1152
   {2,4,12,2,5} of size 1920
Vertex Figure Of :
   {2,2,4,12,2} of size 768
   {3,2,4,12,2} of size 1152
   {5,2,4,12,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,4,6,2}*192c
   4-fold quotients : {2,4,3,2}*96
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,4,12,4}*768d, {2,4,24,2}*768c, {2,4,24,2}*768d, {2,4,12,2}*768b
   3-fold covers : {2,4,36,2}*1152b, {2,4,12,6}*1152d, {2,4,12,6}*1152e
   5-fold covers : {2,4,12,10}*1920b, {2,4,60,2}*1920b
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3, 8)( 4,12)( 5,15)( 6,16)( 7,17)( 9,23)(10,24)(11,25)(13,29)(14,30)
(18,35)(19,36)(20,34)(21,37)(22,38)(26,47)(27,45)(28,43)(31,44)(32,46)(33,42)
(39,49)(40,50)(41,48);;
s2 := ( 4, 5)( 6, 7)( 8,18)(10,14)(11,13)(12,26)(15,31)(16,34)(17,19)(20,36)
(21,22)(23,39)(24,42)(25,32)(27,30)(28,46)(29,43)(33,45)(37,48)(38,40)(41,50)
(44,47);;
s3 := ( 3,11)( 4, 7)( 5,22)( 6,10)( 8,25)( 9,14)(12,17)(13,21)(15,38)(16,24)
(18,28)(19,45)(20,31)(23,30)(26,41)(27,36)(29,37)(32,50)(33,39)(34,44)(35,43)
(40,46)(42,49)(47,48);;
s4 := (51,52);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(52)!(1,2);
s1 := Sym(52)!( 3, 8)( 4,12)( 5,15)( 6,16)( 7,17)( 9,23)(10,24)(11,25)(13,29)
(14,30)(18,35)(19,36)(20,34)(21,37)(22,38)(26,47)(27,45)(28,43)(31,44)(32,46)
(33,42)(39,49)(40,50)(41,48);
s2 := Sym(52)!( 4, 5)( 6, 7)( 8,18)(10,14)(11,13)(12,26)(15,31)(16,34)(17,19)
(20,36)(21,22)(23,39)(24,42)(25,32)(27,30)(28,46)(29,43)(33,45)(37,48)(38,40)
(41,50)(44,47);
s3 := Sym(52)!( 3,11)( 4, 7)( 5,22)( 6,10)( 8,25)( 9,14)(12,17)(13,21)(15,38)
(16,24)(18,28)(19,45)(20,31)(23,30)(26,41)(27,36)(29,37)(32,50)(33,39)(34,44)
(35,43)(40,46)(42,49)(47,48);
s4 := Sym(52)!(51,52);
poly := sub<Sym(52)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope