Polytope of Type {5,2,4,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,4,6}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240151)
Rank : 5
Schlafli Type : {5,2,4,6}
Number of vertices, edges, etc : 5, 5, 16, 48, 24
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,2,4,6}*960
   4-fold quotients : {5,2,4,6}*480a, {5,2,4,3}*480, {5,2,4,6}*480b, {5,2,4,6}*480c
   8-fold quotients : {5,2,4,3}*240, {5,2,2,6}*240
   12-fold quotients : {5,2,4,2}*160
   16-fold quotients : {5,2,2,3}*120
   24-fold quotients : {5,2,2,2}*80
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := (10,11)(12,13)(14,15);;
s3 := ( 6,12)( 7,13)( 8,16)( 9,17)(10,14)(11,15);;
s4 := ( 6, 8)( 7, 9)(12,14)(13,15);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s4*s2*s3*s4*s3*s4*s2*s3*s4*s2*s3*s4*s3*s4*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(17)!(2,3)(4,5);
s1 := Sym(17)!(1,2)(3,4);
s2 := Sym(17)!(10,11)(12,13)(14,15);
s3 := Sym(17)!( 6,12)( 7,13)( 8,16)( 9,17)(10,14)(11,15);
s4 := Sym(17)!( 6, 8)( 7, 9)(12,14)(13,15);
poly := sub<Sym(17)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s4*s2*s3*s4*s3*s4*s2*s3*s4*s2*s3*s4*s3*s4*s2*s3 >; 
 

to this polytope