Polytope of Type {5,2,4,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,4,6}*480a
if this polytope has a name.
Group : SmallGroup(480,1097)
Rank : 5
Schlafli Type : {5,2,4,6}
Number of vertices, edges, etc : 5, 5, 4, 12, 6
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {5,2,4,6,2} of size 960
   {5,2,4,6,3} of size 1440
   {5,2,4,6,4} of size 1920
   {5,2,4,6,3} of size 1920
   {5,2,4,6,4} of size 1920
Vertex Figure Of :
   {2,5,2,4,6} of size 960
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,2,2,6}*240
   3-fold quotients : {5,2,4,2}*160
   4-fold quotients : {5,2,2,3}*120
   6-fold quotients : {5,2,2,2}*80
Covers (Minimal Covers in Boldface) :
   2-fold covers : {5,2,4,12}*960a, {5,2,8,6}*960, {10,2,4,6}*960a
   3-fold covers : {5,2,4,18}*1440a, {5,2,12,6}*1440a, {5,2,12,6}*1440c, {15,2,4,6}*1440a
   4-fold covers : {5,2,8,12}*1920a, {5,2,4,24}*1920a, {5,2,8,12}*1920b, {5,2,4,24}*1920b, {5,2,4,12}*1920a, {5,2,16,6}*1920, {10,4,4,6}*1920, {10,2,4,12}*1920a, {20,2,4,6}*1920a, {10,2,8,6}*1920, {5,2,4,6}*1920b
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := ( 7,10)(11,14)(12,15);;
s3 := ( 6, 7)( 8,12)( 9,11)(10,13)(14,17)(15,16);;
s4 := ( 6, 8)( 7,11)(10,14)(13,16);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(17)!(2,3)(4,5);
s1 := Sym(17)!(1,2)(3,4);
s2 := Sym(17)!( 7,10)(11,14)(12,15);
s3 := Sym(17)!( 6, 7)( 8,12)( 9,11)(10,13)(14,17)(15,16);
s4 := Sym(17)!( 6, 8)( 7,11)(10,14)(13,16);
poly := sub<Sym(17)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s4*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope