include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,2,8,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,2,8,3}*1920
if this polytope has a name.
Group : SmallGroup(1920,240195)
Rank : 5
Schlafli Type : {10,2,8,3}
Number of vertices, edges, etc : 10, 10, 16, 24, 6
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,2,8,3}*960, {10,2,4,3}*960
4-fold quotients : {5,2,4,3}*480, {10,2,4,3}*480
5-fold quotients : {2,2,8,3}*384
8-fold quotients : {5,2,4,3}*240, {10,2,2,3}*240
10-fold quotients : {2,2,4,3}*192
16-fold quotients : {5,2,2,3}*120
20-fold quotients : {2,2,4,3}*96
40-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);;
s2 := (11,21)(12,17)(13,16)(14,37)(15,39)(18,22)(19,26)(20,28)(23,25)(24,27)
(29,54)(30,58)(31,53)(32,56)(33,57)(34,55)(35,38)(36,40)(41,49)(42,51)(43,47)
(44,50)(45,52)(46,48);;
s3 := (12,13)(14,15)(16,29)(17,32)(19,24)(20,23)(21,41)(22,44)(25,47)(26,48)
(27,33)(28,30)(31,52)(34,51)(35,36)(37,53)(38,55)(39,42)(40,45)(43,57)(46,58)
(49,50);;
s4 := (11,15)(12,24)(13,20)(16,28)(17,27)(18,36)(19,23)(21,39)(22,40)(25,26)
(29,31)(30,52)(32,34)(33,51)(41,43)(42,57)(44,46)(45,58)(47,49)(48,50)(53,54)
(55,56);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4, s2*s4*s3*s2*s4*s3*s2*s3*s2*s4*s3*s2*s4*s3*s2*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(58)!( 3, 4)( 5, 6)( 7, 8)( 9,10);
s1 := Sym(58)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);
s2 := Sym(58)!(11,21)(12,17)(13,16)(14,37)(15,39)(18,22)(19,26)(20,28)(23,25)
(24,27)(29,54)(30,58)(31,53)(32,56)(33,57)(34,55)(35,38)(36,40)(41,49)(42,51)
(43,47)(44,50)(45,52)(46,48);
s3 := Sym(58)!(12,13)(14,15)(16,29)(17,32)(19,24)(20,23)(21,41)(22,44)(25,47)
(26,48)(27,33)(28,30)(31,52)(34,51)(35,36)(37,53)(38,55)(39,42)(40,45)(43,57)
(46,58)(49,50);
s4 := Sym(58)!(11,15)(12,24)(13,20)(16,28)(17,27)(18,36)(19,23)(21,39)(22,40)
(25,26)(29,31)(30,52)(32,34)(33,51)(41,43)(42,57)(44,46)(45,58)(47,49)(48,50)
(53,54)(55,56);
poly := sub<Sym(58)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4,
s2*s4*s3*s2*s4*s3*s2*s3*s2*s4*s3*s2*s4*s3*s2*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope