include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,2,4,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,2,4,3}*480
if this polytope has a name.
Group : SmallGroup(480,1193)
Rank : 5
Schlafli Type : {10,2,4,3}
Number of vertices, edges, etc : 10, 10, 4, 6, 3
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{10,2,4,3,2} of size 960
{10,2,4,3,4} of size 1920
Vertex Figure Of :
{2,10,2,4,3} of size 960
{4,10,2,4,3} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,2,4,3}*240
5-fold quotients : {2,2,4,3}*96
Covers (Minimal Covers in Boldface) :
2-fold covers : {20,2,4,3}*960, {10,2,4,3}*960, {10,2,4,6}*960b, {10,2,4,6}*960c
3-fold covers : {10,2,4,9}*1440, {30,2,4,3}*1440
4-fold covers : {10,4,4,3}*1920a, {40,2,4,3}*1920, {10,2,4,12}*1920b, {10,2,4,12}*1920c, {20,2,4,3}*1920, {20,2,4,6}*1920b, {20,2,4,6}*1920c, {10,4,4,3}*1920b, {10,2,8,3}*1920, {10,2,4,6}*1920
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);;
s2 := (11,12)(13,14);;
s3 := (12,13);;
s4 := (13,14);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3,
s4*s2*s3*s4*s2*s3*s4*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(14)!( 3, 4)( 5, 6)( 7, 8)( 9,10);
s1 := Sym(14)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);
s2 := Sym(14)!(11,12)(13,14);
s3 := Sym(14)!(12,13);
s4 := Sym(14)!(13,14);
poly := sub<Sym(14)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3, s4*s2*s3*s4*s2*s3*s4*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope