include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,2,12,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,2,12,3}*1920
if this polytope has a name.
Group : SmallGroup(1920,240195)
Rank : 5
Schlafli Type : {10,2,12,3}
Number of vertices, edges, etc : 10, 10, 16, 24, 4
Order of s0s1s2s3s4 : 40
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,2,12,3}*960, {10,2,6,3}*960
4-fold quotients : {5,2,6,3}*480, {10,2,3,3}*480
5-fold quotients : {2,2,12,3}*384
8-fold quotients : {5,2,3,3}*240
10-fold quotients : {2,2,6,3}*192
20-fold quotients : {2,2,3,3}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);;
s2 := (12,13)(14,15)(16,29)(17,32)(19,24)(20,23)(21,41)(22,44)(25,47)(26,48)
(27,33)(28,30)(31,52)(34,51)(35,36)(37,53)(38,55)(39,42)(40,45)(43,57)(46,58)
(49,50);;
s3 := (11,19)(12,14)(13,35)(15,20)(16,58)(17,57)(18,23)(21,52)(22,51)(24,36)
(25,56)(26,54)(27,46)(28,43)(29,42)(30,44)(31,40)(32,45)(33,41)(34,39)(37,50)
(38,49)(47,53)(48,55);;
s4 := (11,56)(12,50)(13,49)(14,46)(15,58)(16,21)(17,22)(18,54)(19,34)(20,52)
(23,31)(24,51)(25,39)(26,40)(27,37)(28,38)(29,41)(30,55)(32,44)(33,53)(35,43)
(36,57)(42,47)(45,48);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4, s4*s2*s3*s2*s3*s2*s3*s4*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(58)!( 3, 4)( 5, 6)( 7, 8)( 9,10);
s1 := Sym(58)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);
s2 := Sym(58)!(12,13)(14,15)(16,29)(17,32)(19,24)(20,23)(21,41)(22,44)(25,47)
(26,48)(27,33)(28,30)(31,52)(34,51)(35,36)(37,53)(38,55)(39,42)(40,45)(43,57)
(46,58)(49,50);
s3 := Sym(58)!(11,19)(12,14)(13,35)(15,20)(16,58)(17,57)(18,23)(21,52)(22,51)
(24,36)(25,56)(26,54)(27,46)(28,43)(29,42)(30,44)(31,40)(32,45)(33,41)(34,39)
(37,50)(38,49)(47,53)(48,55);
s4 := Sym(58)!(11,56)(12,50)(13,49)(14,46)(15,58)(16,21)(17,22)(18,54)(19,34)
(20,52)(23,31)(24,51)(25,39)(26,40)(27,37)(28,38)(29,41)(30,55)(32,44)(33,53)
(35,43)(36,57)(42,47)(45,48);
poly := sub<Sym(58)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4,
s4*s2*s3*s2*s3*s2*s3*s4*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope