include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {5,2,3,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,3,3}*240
if this polytope has a name.
Group : SmallGroup(240,194)
Rank : 5
Schlafli Type : {5,2,3,3}
Number of vertices, edges, etc : 5, 5, 4, 6, 4
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Locally Projective
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{5,2,3,3,2} of size 480
{5,2,3,3,3} of size 1200
{5,2,3,3,4} of size 1920
Vertex Figure Of :
{2,5,2,3,3} of size 480
{3,5,2,3,3} of size 1440
{5,5,2,3,3} of size 1440
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {5,2,3,6}*480, {5,2,6,3}*480, {10,2,3,3}*480
3-fold covers : {15,2,3,3}*720
4-fold covers : {20,2,3,3}*960, {5,2,3,12}*960, {5,2,12,3}*960, {5,2,6,6}*960, {10,2,3,6}*960, {10,2,6,3}*960
5-fold covers : {25,2,3,3}*1200
6-fold covers : {5,2,3,6}*1440, {5,2,6,3}*1440, {15,2,3,6}*1440, {15,2,6,3}*1440, {30,2,3,3}*1440
7-fold covers : {35,2,3,3}*1680
8-fold covers : {5,2,6,6}*1920a, {10,4,3,3}*1920, {5,2,3,6}*1920, {5,2,6,3}*1920, {40,2,3,3}*1920, {20,2,3,6}*1920, {20,2,6,3}*1920, {10,4,6,3}*1920, {5,2,6,12}*1920a, {5,2,12,6}*1920a, {5,2,6,12}*1920b, {5,2,12,6}*1920b, {10,2,3,12}*1920, {10,2,12,3}*1920, {5,2,6,6}*1920b, {10,2,6,6}*1920
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := (8,9);;
s3 := (7,8);;
s4 := (6,7);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s2*s3*s2*s3, s3*s4*s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(9)!(2,3)(4,5);
s1 := Sym(9)!(1,2)(3,4);
s2 := Sym(9)!(8,9);
s3 := Sym(9)!(7,8);
s4 := Sym(9)!(6,7);
poly := sub<Sym(9)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope