include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,30,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,30,12}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240232)
Rank : 4
Schlafli Type : {2,30,12}
Number of vertices, edges, etc : 2, 40, 240, 16
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,30,6}*960
4-fold quotients : {2,15,6}*480
5-fold quotients : {2,6,12}*384a
10-fold quotients : {2,6,6}*192
12-fold quotients : {2,10,4}*160
20-fold quotients : {2,3,6}*96, {2,6,3}*96
24-fold quotients : {2,10,2}*80
40-fold quotients : {2,3,3}*48
48-fold quotients : {2,5,2}*40
60-fold quotients : {2,2,4}*32
120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 7, 19)( 8, 21)( 9, 20)( 10, 22)( 11, 15)( 12, 17)( 13, 16)
( 14, 18)( 23, 43)( 24, 45)( 25, 44)( 26, 46)( 27, 59)( 28, 61)( 29, 60)
( 30, 62)( 31, 55)( 32, 57)( 33, 56)( 34, 58)( 35, 51)( 36, 53)( 37, 52)
( 38, 54)( 39, 47)( 40, 49)( 41, 48)( 42, 50)( 64, 65)( 67, 79)( 68, 81)
( 69, 80)( 70, 82)( 71, 75)( 72, 77)( 73, 76)( 74, 78)( 83,103)( 84,105)
( 85,104)( 86,106)( 87,119)( 88,121)( 89,120)( 90,122)( 91,115)( 92,117)
( 93,116)( 94,118)( 95,111)( 96,113)( 97,112)( 98,114)( 99,107)(100,109)
(101,108)(102,110)(124,125)(127,139)(128,141)(129,140)(130,142)(131,135)
(132,137)(133,136)(134,138)(143,163)(144,165)(145,164)(146,166)(147,179)
(148,181)(149,180)(150,182)(151,175)(152,177)(153,176)(154,178)(155,171)
(156,173)(157,172)(158,174)(159,167)(160,169)(161,168)(162,170)(184,185)
(187,199)(188,201)(189,200)(190,202)(191,195)(192,197)(193,196)(194,198)
(203,223)(204,225)(205,224)(206,226)(207,239)(208,241)(209,240)(210,242)
(211,235)(212,237)(213,236)(214,238)(215,231)(216,233)(217,232)(218,234)
(219,227)(220,229)(221,228)(222,230);;
s2 := ( 3,147)( 4,148)( 5,150)( 6,149)( 7,143)( 8,144)( 9,146)( 10,145)
( 11,159)( 12,160)( 13,162)( 14,161)( 15,155)( 16,156)( 17,158)( 18,157)
( 19,151)( 20,152)( 21,154)( 22,153)( 23,127)( 24,128)( 25,130)( 26,129)
( 27,123)( 28,124)( 29,126)( 30,125)( 31,139)( 32,140)( 33,142)( 34,141)
( 35,135)( 36,136)( 37,138)( 38,137)( 39,131)( 40,132)( 41,134)( 42,133)
( 43,167)( 44,168)( 45,170)( 46,169)( 47,163)( 48,164)( 49,166)( 50,165)
( 51,179)( 52,180)( 53,182)( 54,181)( 55,175)( 56,176)( 57,178)( 58,177)
( 59,171)( 60,172)( 61,174)( 62,173)( 63,207)( 64,208)( 65,210)( 66,209)
( 67,203)( 68,204)( 69,206)( 70,205)( 71,219)( 72,220)( 73,222)( 74,221)
( 75,215)( 76,216)( 77,218)( 78,217)( 79,211)( 80,212)( 81,214)( 82,213)
( 83,187)( 84,188)( 85,190)( 86,189)( 87,183)( 88,184)( 89,186)( 90,185)
( 91,199)( 92,200)( 93,202)( 94,201)( 95,195)( 96,196)( 97,198)( 98,197)
( 99,191)(100,192)(101,194)(102,193)(103,227)(104,228)(105,230)(106,229)
(107,223)(108,224)(109,226)(110,225)(111,239)(112,240)(113,242)(114,241)
(115,235)(116,236)(117,238)(118,237)(119,231)(120,232)(121,234)(122,233);;
s3 := ( 3, 6)( 7, 10)( 11, 14)( 15, 18)( 19, 22)( 23, 46)( 24, 44)( 25, 45)
( 26, 43)( 27, 50)( 28, 48)( 29, 49)( 30, 47)( 31, 54)( 32, 52)( 33, 53)
( 34, 51)( 35, 58)( 36, 56)( 37, 57)( 38, 55)( 39, 62)( 40, 60)( 41, 61)
( 42, 59)( 63, 66)( 67, 70)( 71, 74)( 75, 78)( 79, 82)( 83,106)( 84,104)
( 85,105)( 86,103)( 87,110)( 88,108)( 89,109)( 90,107)( 91,114)( 92,112)
( 93,113)( 94,111)( 95,118)( 96,116)( 97,117)( 98,115)( 99,122)(100,120)
(101,121)(102,119)(123,186)(124,184)(125,185)(126,183)(127,190)(128,188)
(129,189)(130,187)(131,194)(132,192)(133,193)(134,191)(135,198)(136,196)
(137,197)(138,195)(139,202)(140,200)(141,201)(142,199)(143,226)(144,224)
(145,225)(146,223)(147,230)(148,228)(149,229)(150,227)(151,234)(152,232)
(153,233)(154,231)(155,238)(156,236)(157,237)(158,235)(159,242)(160,240)
(161,241)(162,239)(163,206)(164,204)(165,205)(166,203)(167,210)(168,208)
(169,209)(170,207)(171,214)(172,212)(173,213)(174,211)(175,218)(176,216)
(177,217)(178,215)(179,222)(180,220)(181,221)(182,219);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s3*s1*s2*s3*s2*s1*s2*s1*s2*s3*s1*s2*s3*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s1*s2*s3*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2,
s3*s2*s1*s3*s2*s1*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(242)!(1,2);
s1 := Sym(242)!( 4, 5)( 7, 19)( 8, 21)( 9, 20)( 10, 22)( 11, 15)( 12, 17)
( 13, 16)( 14, 18)( 23, 43)( 24, 45)( 25, 44)( 26, 46)( 27, 59)( 28, 61)
( 29, 60)( 30, 62)( 31, 55)( 32, 57)( 33, 56)( 34, 58)( 35, 51)( 36, 53)
( 37, 52)( 38, 54)( 39, 47)( 40, 49)( 41, 48)( 42, 50)( 64, 65)( 67, 79)
( 68, 81)( 69, 80)( 70, 82)( 71, 75)( 72, 77)( 73, 76)( 74, 78)( 83,103)
( 84,105)( 85,104)( 86,106)( 87,119)( 88,121)( 89,120)( 90,122)( 91,115)
( 92,117)( 93,116)( 94,118)( 95,111)( 96,113)( 97,112)( 98,114)( 99,107)
(100,109)(101,108)(102,110)(124,125)(127,139)(128,141)(129,140)(130,142)
(131,135)(132,137)(133,136)(134,138)(143,163)(144,165)(145,164)(146,166)
(147,179)(148,181)(149,180)(150,182)(151,175)(152,177)(153,176)(154,178)
(155,171)(156,173)(157,172)(158,174)(159,167)(160,169)(161,168)(162,170)
(184,185)(187,199)(188,201)(189,200)(190,202)(191,195)(192,197)(193,196)
(194,198)(203,223)(204,225)(205,224)(206,226)(207,239)(208,241)(209,240)
(210,242)(211,235)(212,237)(213,236)(214,238)(215,231)(216,233)(217,232)
(218,234)(219,227)(220,229)(221,228)(222,230);
s2 := Sym(242)!( 3,147)( 4,148)( 5,150)( 6,149)( 7,143)( 8,144)( 9,146)
( 10,145)( 11,159)( 12,160)( 13,162)( 14,161)( 15,155)( 16,156)( 17,158)
( 18,157)( 19,151)( 20,152)( 21,154)( 22,153)( 23,127)( 24,128)( 25,130)
( 26,129)( 27,123)( 28,124)( 29,126)( 30,125)( 31,139)( 32,140)( 33,142)
( 34,141)( 35,135)( 36,136)( 37,138)( 38,137)( 39,131)( 40,132)( 41,134)
( 42,133)( 43,167)( 44,168)( 45,170)( 46,169)( 47,163)( 48,164)( 49,166)
( 50,165)( 51,179)( 52,180)( 53,182)( 54,181)( 55,175)( 56,176)( 57,178)
( 58,177)( 59,171)( 60,172)( 61,174)( 62,173)( 63,207)( 64,208)( 65,210)
( 66,209)( 67,203)( 68,204)( 69,206)( 70,205)( 71,219)( 72,220)( 73,222)
( 74,221)( 75,215)( 76,216)( 77,218)( 78,217)( 79,211)( 80,212)( 81,214)
( 82,213)( 83,187)( 84,188)( 85,190)( 86,189)( 87,183)( 88,184)( 89,186)
( 90,185)( 91,199)( 92,200)( 93,202)( 94,201)( 95,195)( 96,196)( 97,198)
( 98,197)( 99,191)(100,192)(101,194)(102,193)(103,227)(104,228)(105,230)
(106,229)(107,223)(108,224)(109,226)(110,225)(111,239)(112,240)(113,242)
(114,241)(115,235)(116,236)(117,238)(118,237)(119,231)(120,232)(121,234)
(122,233);
s3 := Sym(242)!( 3, 6)( 7, 10)( 11, 14)( 15, 18)( 19, 22)( 23, 46)( 24, 44)
( 25, 45)( 26, 43)( 27, 50)( 28, 48)( 29, 49)( 30, 47)( 31, 54)( 32, 52)
( 33, 53)( 34, 51)( 35, 58)( 36, 56)( 37, 57)( 38, 55)( 39, 62)( 40, 60)
( 41, 61)( 42, 59)( 63, 66)( 67, 70)( 71, 74)( 75, 78)( 79, 82)( 83,106)
( 84,104)( 85,105)( 86,103)( 87,110)( 88,108)( 89,109)( 90,107)( 91,114)
( 92,112)( 93,113)( 94,111)( 95,118)( 96,116)( 97,117)( 98,115)( 99,122)
(100,120)(101,121)(102,119)(123,186)(124,184)(125,185)(126,183)(127,190)
(128,188)(129,189)(130,187)(131,194)(132,192)(133,193)(134,191)(135,198)
(136,196)(137,197)(138,195)(139,202)(140,200)(141,201)(142,199)(143,226)
(144,224)(145,225)(146,223)(147,230)(148,228)(149,229)(150,227)(151,234)
(152,232)(153,233)(154,231)(155,238)(156,236)(157,237)(158,235)(159,242)
(160,240)(161,241)(162,239)(163,206)(164,204)(165,205)(166,203)(167,210)
(168,208)(169,209)(170,207)(171,214)(172,212)(173,213)(174,211)(175,218)
(176,216)(177,217)(178,215)(179,222)(180,220)(181,221)(182,219);
poly := sub<Sym(242)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s3*s1*s2*s3*s2*s1*s2*s1*s2*s3*s1*s2*s3*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s1*s2*s3*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2*s3*s1*s2*s3*s2,
s3*s2*s1*s3*s2*s1*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1 >;
to this polytope