Polytope of Type {2,6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,6}*192
if this polytope has a name.
Group : SmallGroup(192,1537)
Rank : 4
Schlafli Type : {2,6,6}
Number of vertices, edges, etc : 2, 8, 24, 8
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,6,6,2} of size 384
   {2,6,6,4} of size 768
   {2,6,6,3} of size 960
   {2,6,6,6} of size 1152
   {2,6,6,10} of size 1920
   {2,6,6,6} of size 1920
Vertex Figure Of :
   {2,2,6,6} of size 384
   {3,2,6,6} of size 576
   {4,2,6,6} of size 768
   {5,2,6,6} of size 960
   {6,2,6,6} of size 1152
   {7,2,6,6} of size 1344
   {9,2,6,6} of size 1728
   {10,2,6,6} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,3,6}*96, {2,6,3}*96
   4-fold quotients : {2,3,3}*48
   12-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,6,6}*384, {2,6,12}*384a, {2,12,6}*384a, {2,6,12}*384b, {2,12,6}*384b, {2,6,6}*384b
   3-fold covers : {6,6,6}*576a, {2,6,6}*576a, {2,6,6}*576b
   4-fold covers : {2,12,12}*768a, {4,12,6}*768a, {4,6,12}*768a, {2,6,6}*768c, {2,6,6}*768d, {4,6,6}*768d, {2,6,6}*768e, {2,12,12}*768b, {4,12,6}*768b, {2,6,12}*768, {2,12,6}*768, {2,12,12}*768c, {2,12,12}*768d, {8,6,6}*768, {2,6,24}*768a, {2,24,6}*768a, {4,6,6}*768e, {4,6,12}*768b, {2,6,24}*768b, {2,24,6}*768b
   5-fold covers : {10,6,6}*960, {2,6,30}*960, {2,30,6}*960
   6-fold covers : {12,6,6}*1152a, {2,6,12}*1152a, {2,12,6}*1152a, {4,6,6}*1152c, {6,6,12}*1152b, {6,12,6}*1152a, {2,6,12}*1152c, {2,12,6}*1152c, {2,6,6}*1152a, {2,6,6}*1152b, {6,6,12}*1152c, {6,12,6}*1152c, {2,6,12}*1152d, {2,12,6}*1152d, {6,6,6}*1152a, {4,6,6}*1152f, {2,6,12}*1152e, {2,12,6}*1152e
   7-fold covers : {14,6,6}*1344, {2,6,42}*1344, {2,42,6}*1344
   9-fold covers : {18,6,6}*1728, {2,6,18}*1728, {2,18,6}*1728, {2,6,6}*1728a, {2,6,6}*1728b, {6,6,6}*1728a, {6,6,6}*1728b, {6,6,6}*1728c, {2,6,6}*1728c
   10-fold covers : {20,6,6}*1920, {2,6,60}*1920a, {2,60,6}*1920a, {4,30,6}*1920, {10,6,12}*1920a, {10,12,6}*1920a, {2,12,30}*1920a, {2,30,12}*1920a, {2,6,30}*1920, {2,30,6}*1920, {10,6,12}*1920b, {10,12,6}*1920b, {2,6,60}*1920b, {2,60,6}*1920b, {10,6,6}*1920, {4,6,30}*1920, {2,12,30}*1920b, {2,30,12}*1920b
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (10,11)(13,14)(15,16)(17,18);;
s2 := ( 3, 4)( 5, 7)( 6,13)( 8,10)( 9,17)(11,14)(12,15)(16,18);;
s3 := ( 3, 9)( 4,12)( 5, 6)( 7, 8)(10,15)(11,16)(13,17)(14,18);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(18)!(1,2);
s1 := Sym(18)!(10,11)(13,14)(15,16)(17,18);
s2 := Sym(18)!( 3, 4)( 5, 7)( 6,13)( 8,10)( 9,17)(11,14)(12,15)(16,18);
s3 := Sym(18)!( 3, 9)( 4,12)( 5, 6)( 7, 8)(10,15)(11,16)(13,17)(14,18);
poly := sub<Sym(18)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2 >; 
 

to this polytope