include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,60,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,60,4}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240289)
Rank : 5
Schlafli Type : {2,2,60,4}
Number of vertices, edges, etc : 2, 2, 60, 120, 4
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,30,4}*960b
4-fold quotients : {2,2,15,4}*480
5-fold quotients : {2,2,12,4}*384b
10-fold quotients : {2,2,6,4}*192c
20-fold quotients : {2,2,3,4}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 7)( 9, 21)( 10, 23)( 11, 22)( 12, 24)( 13, 17)( 14, 19)( 15, 18)
( 16, 20)( 25, 45)( 26, 47)( 27, 46)( 28, 48)( 29, 61)( 30, 63)( 31, 62)
( 32, 64)( 33, 57)( 34, 59)( 35, 58)( 36, 60)( 37, 53)( 38, 55)( 39, 54)
( 40, 56)( 41, 49)( 42, 51)( 43, 50)( 44, 52)( 66, 67)( 69, 81)( 70, 83)
( 71, 82)( 72, 84)( 73, 77)( 74, 79)( 75, 78)( 76, 80)( 85,105)( 86,107)
( 87,106)( 88,108)( 89,121)( 90,123)( 91,122)( 92,124)( 93,117)( 94,119)
( 95,118)( 96,120)( 97,113)( 98,115)( 99,114)(100,116)(101,109)(102,111)
(103,110)(104,112)(125,185)(126,187)(127,186)(128,188)(129,201)(130,203)
(131,202)(132,204)(133,197)(134,199)(135,198)(136,200)(137,193)(138,195)
(139,194)(140,196)(141,189)(142,191)(143,190)(144,192)(145,225)(146,227)
(147,226)(148,228)(149,241)(150,243)(151,242)(152,244)(153,237)(154,239)
(155,238)(156,240)(157,233)(158,235)(159,234)(160,236)(161,229)(162,231)
(163,230)(164,232)(165,205)(166,207)(167,206)(168,208)(169,221)(170,223)
(171,222)(172,224)(173,217)(174,219)(175,218)(176,220)(177,213)(178,215)
(179,214)(180,216)(181,209)(182,211)(183,210)(184,212);;
s3 := ( 5,149)( 6,150)( 7,152)( 8,151)( 9,145)( 10,146)( 11,148)( 12,147)
( 13,161)( 14,162)( 15,164)( 16,163)( 17,157)( 18,158)( 19,160)( 20,159)
( 21,153)( 22,154)( 23,156)( 24,155)( 25,129)( 26,130)( 27,132)( 28,131)
( 29,125)( 30,126)( 31,128)( 32,127)( 33,141)( 34,142)( 35,144)( 36,143)
( 37,137)( 38,138)( 39,140)( 40,139)( 41,133)( 42,134)( 43,136)( 44,135)
( 45,169)( 46,170)( 47,172)( 48,171)( 49,165)( 50,166)( 51,168)( 52,167)
( 53,181)( 54,182)( 55,184)( 56,183)( 57,177)( 58,178)( 59,180)( 60,179)
( 61,173)( 62,174)( 63,176)( 64,175)( 65,209)( 66,210)( 67,212)( 68,211)
( 69,205)( 70,206)( 71,208)( 72,207)( 73,221)( 74,222)( 75,224)( 76,223)
( 77,217)( 78,218)( 79,220)( 80,219)( 81,213)( 82,214)( 83,216)( 84,215)
( 85,189)( 86,190)( 87,192)( 88,191)( 89,185)( 90,186)( 91,188)( 92,187)
( 93,201)( 94,202)( 95,204)( 96,203)( 97,197)( 98,198)( 99,200)(100,199)
(101,193)(102,194)(103,196)(104,195)(105,229)(106,230)(107,232)(108,231)
(109,225)(110,226)(111,228)(112,227)(113,241)(114,242)(115,244)(116,243)
(117,237)(118,238)(119,240)(120,239)(121,233)(122,234)(123,236)(124,235);;
s4 := ( 5, 8)( 6, 7)( 9, 12)( 10, 11)( 13, 16)( 14, 15)( 17, 20)( 18, 19)
( 21, 24)( 22, 23)( 25, 28)( 26, 27)( 29, 32)( 30, 31)( 33, 36)( 34, 35)
( 37, 40)( 38, 39)( 41, 44)( 42, 43)( 45, 48)( 46, 47)( 49, 52)( 50, 51)
( 53, 56)( 54, 55)( 57, 60)( 58, 59)( 61, 64)( 62, 63)( 65, 68)( 66, 67)
( 69, 72)( 70, 71)( 73, 76)( 74, 75)( 77, 80)( 78, 79)( 81, 84)( 82, 83)
( 85, 88)( 86, 87)( 89, 92)( 90, 91)( 93, 96)( 94, 95)( 97,100)( 98, 99)
(101,104)(102,103)(105,108)(106,107)(109,112)(110,111)(113,116)(114,115)
(117,120)(118,119)(121,124)(122,123)(125,128)(126,127)(129,132)(130,131)
(133,136)(134,135)(137,140)(138,139)(141,144)(142,143)(145,148)(146,147)
(149,152)(150,151)(153,156)(154,155)(157,160)(158,159)(161,164)(162,163)
(165,168)(166,167)(169,172)(170,171)(173,176)(174,175)(177,180)(178,179)
(181,184)(182,183)(185,188)(186,187)(189,192)(190,191)(193,196)(194,195)
(197,200)(198,199)(201,204)(202,203)(205,208)(206,207)(209,212)(210,211)
(213,216)(214,215)(217,220)(218,219)(221,224)(222,223)(225,228)(226,227)
(229,232)(230,231)(233,236)(234,235)(237,240)(238,239)(241,244)(242,243);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4,
s4*s3*s2*s4*s3*s4*s3*s2*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(244)!(1,2);
s1 := Sym(244)!(3,4);
s2 := Sym(244)!( 6, 7)( 9, 21)( 10, 23)( 11, 22)( 12, 24)( 13, 17)( 14, 19)
( 15, 18)( 16, 20)( 25, 45)( 26, 47)( 27, 46)( 28, 48)( 29, 61)( 30, 63)
( 31, 62)( 32, 64)( 33, 57)( 34, 59)( 35, 58)( 36, 60)( 37, 53)( 38, 55)
( 39, 54)( 40, 56)( 41, 49)( 42, 51)( 43, 50)( 44, 52)( 66, 67)( 69, 81)
( 70, 83)( 71, 82)( 72, 84)( 73, 77)( 74, 79)( 75, 78)( 76, 80)( 85,105)
( 86,107)( 87,106)( 88,108)( 89,121)( 90,123)( 91,122)( 92,124)( 93,117)
( 94,119)( 95,118)( 96,120)( 97,113)( 98,115)( 99,114)(100,116)(101,109)
(102,111)(103,110)(104,112)(125,185)(126,187)(127,186)(128,188)(129,201)
(130,203)(131,202)(132,204)(133,197)(134,199)(135,198)(136,200)(137,193)
(138,195)(139,194)(140,196)(141,189)(142,191)(143,190)(144,192)(145,225)
(146,227)(147,226)(148,228)(149,241)(150,243)(151,242)(152,244)(153,237)
(154,239)(155,238)(156,240)(157,233)(158,235)(159,234)(160,236)(161,229)
(162,231)(163,230)(164,232)(165,205)(166,207)(167,206)(168,208)(169,221)
(170,223)(171,222)(172,224)(173,217)(174,219)(175,218)(176,220)(177,213)
(178,215)(179,214)(180,216)(181,209)(182,211)(183,210)(184,212);
s3 := Sym(244)!( 5,149)( 6,150)( 7,152)( 8,151)( 9,145)( 10,146)( 11,148)
( 12,147)( 13,161)( 14,162)( 15,164)( 16,163)( 17,157)( 18,158)( 19,160)
( 20,159)( 21,153)( 22,154)( 23,156)( 24,155)( 25,129)( 26,130)( 27,132)
( 28,131)( 29,125)( 30,126)( 31,128)( 32,127)( 33,141)( 34,142)( 35,144)
( 36,143)( 37,137)( 38,138)( 39,140)( 40,139)( 41,133)( 42,134)( 43,136)
( 44,135)( 45,169)( 46,170)( 47,172)( 48,171)( 49,165)( 50,166)( 51,168)
( 52,167)( 53,181)( 54,182)( 55,184)( 56,183)( 57,177)( 58,178)( 59,180)
( 60,179)( 61,173)( 62,174)( 63,176)( 64,175)( 65,209)( 66,210)( 67,212)
( 68,211)( 69,205)( 70,206)( 71,208)( 72,207)( 73,221)( 74,222)( 75,224)
( 76,223)( 77,217)( 78,218)( 79,220)( 80,219)( 81,213)( 82,214)( 83,216)
( 84,215)( 85,189)( 86,190)( 87,192)( 88,191)( 89,185)( 90,186)( 91,188)
( 92,187)( 93,201)( 94,202)( 95,204)( 96,203)( 97,197)( 98,198)( 99,200)
(100,199)(101,193)(102,194)(103,196)(104,195)(105,229)(106,230)(107,232)
(108,231)(109,225)(110,226)(111,228)(112,227)(113,241)(114,242)(115,244)
(116,243)(117,237)(118,238)(119,240)(120,239)(121,233)(122,234)(123,236)
(124,235);
s4 := Sym(244)!( 5, 8)( 6, 7)( 9, 12)( 10, 11)( 13, 16)( 14, 15)( 17, 20)
( 18, 19)( 21, 24)( 22, 23)( 25, 28)( 26, 27)( 29, 32)( 30, 31)( 33, 36)
( 34, 35)( 37, 40)( 38, 39)( 41, 44)( 42, 43)( 45, 48)( 46, 47)( 49, 52)
( 50, 51)( 53, 56)( 54, 55)( 57, 60)( 58, 59)( 61, 64)( 62, 63)( 65, 68)
( 66, 67)( 69, 72)( 70, 71)( 73, 76)( 74, 75)( 77, 80)( 78, 79)( 81, 84)
( 82, 83)( 85, 88)( 86, 87)( 89, 92)( 90, 91)( 93, 96)( 94, 95)( 97,100)
( 98, 99)(101,104)(102,103)(105,108)(106,107)(109,112)(110,111)(113,116)
(114,115)(117,120)(118,119)(121,124)(122,123)(125,128)(126,127)(129,132)
(130,131)(133,136)(134,135)(137,140)(138,139)(141,144)(142,143)(145,148)
(146,147)(149,152)(150,151)(153,156)(154,155)(157,160)(158,159)(161,164)
(162,163)(165,168)(166,167)(169,172)(170,171)(173,176)(174,175)(177,180)
(178,179)(181,184)(182,183)(185,188)(186,187)(189,192)(190,191)(193,196)
(194,195)(197,200)(198,199)(201,204)(202,203)(205,208)(206,207)(209,212)
(210,211)(213,216)(214,215)(217,220)(218,219)(221,224)(222,223)(225,228)
(226,227)(229,232)(230,231)(233,236)(234,235)(237,240)(238,239)(241,244)
(242,243);
poly := sub<Sym(244)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4*s3*s4, s4*s3*s2*s4*s3*s4*s3*s2*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope