Polytope of Type {15,4,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {15,4,4,2}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240291)
Rank : 5
Schlafli Type : {15,4,4,2}
Number of vertices, edges, etc : 30, 60, 16, 4, 2
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {15,4,2,2}*960
   4-fold quotients : {15,2,4,2}*480, {15,4,2,2}*480
   5-fold quotients : {3,4,4,2}*384b
   8-fold quotients : {15,2,2,2}*240
   10-fold quotients : {3,4,2,2}*192
   12-fold quotients : {5,2,4,2}*160
   20-fold quotients : {3,2,4,2}*96, {3,4,2,2}*96
   24-fold quotients : {5,2,2,2}*80
   40-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  5, 17)(  6, 19)(  7, 18)(  8, 20)(  9, 13)( 10, 15)( 11, 14)
( 12, 16)( 21, 41)( 22, 43)( 23, 42)( 24, 44)( 25, 57)( 26, 59)( 27, 58)
( 28, 60)( 29, 53)( 30, 55)( 31, 54)( 32, 56)( 33, 49)( 34, 51)( 35, 50)
( 36, 52)( 37, 45)( 38, 47)( 39, 46)( 40, 48)( 62, 63)( 65, 77)( 66, 79)
( 67, 78)( 68, 80)( 69, 73)( 70, 75)( 71, 74)( 72, 76)( 81,101)( 82,103)
( 83,102)( 84,104)( 85,117)( 86,119)( 87,118)( 88,120)( 89,113)( 90,115)
( 91,114)( 92,116)( 93,109)( 94,111)( 95,110)( 96,112)( 97,105)( 98,107)
( 99,106)(100,108)(122,123)(125,137)(126,139)(127,138)(128,140)(129,133)
(130,135)(131,134)(132,136)(141,161)(142,163)(143,162)(144,164)(145,177)
(146,179)(147,178)(148,180)(149,173)(150,175)(151,174)(152,176)(153,169)
(154,171)(155,170)(156,172)(157,165)(158,167)(159,166)(160,168)(182,183)
(185,197)(186,199)(187,198)(188,200)(189,193)(190,195)(191,194)(192,196)
(201,221)(202,223)(203,222)(204,224)(205,237)(206,239)(207,238)(208,240)
(209,233)(210,235)(211,234)(212,236)(213,229)(214,231)(215,230)(216,232)
(217,225)(218,227)(219,226)(220,228);;
s1 := (  1, 25)(  2, 26)(  3, 28)(  4, 27)(  5, 21)(  6, 22)(  7, 24)(  8, 23)
(  9, 37)( 10, 38)( 11, 40)( 12, 39)( 13, 33)( 14, 34)( 15, 36)( 16, 35)
( 17, 29)( 18, 30)( 19, 32)( 20, 31)( 41, 45)( 42, 46)( 43, 48)( 44, 47)
( 49, 57)( 50, 58)( 51, 60)( 52, 59)( 55, 56)( 61, 85)( 62, 86)( 63, 88)
( 64, 87)( 65, 81)( 66, 82)( 67, 84)( 68, 83)( 69, 97)( 70, 98)( 71,100)
( 72, 99)( 73, 93)( 74, 94)( 75, 96)( 76, 95)( 77, 89)( 78, 90)( 79, 92)
( 80, 91)(101,105)(102,106)(103,108)(104,107)(109,117)(110,118)(111,120)
(112,119)(115,116)(121,145)(122,146)(123,148)(124,147)(125,141)(126,142)
(127,144)(128,143)(129,157)(130,158)(131,160)(132,159)(133,153)(134,154)
(135,156)(136,155)(137,149)(138,150)(139,152)(140,151)(161,165)(162,166)
(163,168)(164,167)(169,177)(170,178)(171,180)(172,179)(175,176)(181,205)
(182,206)(183,208)(184,207)(185,201)(186,202)(187,204)(188,203)(189,217)
(190,218)(191,220)(192,219)(193,213)(194,214)(195,216)(196,215)(197,209)
(198,210)(199,212)(200,211)(221,225)(222,226)(223,228)(224,227)(229,237)
(230,238)(231,240)(232,239)(235,236);;
s2 := (  1,  4)(  2,  3)(  5,  8)(  6,  7)(  9, 12)( 10, 11)( 13, 16)( 14, 15)
( 17, 20)( 18, 19)( 21, 24)( 22, 23)( 25, 28)( 26, 27)( 29, 32)( 30, 31)
( 33, 36)( 34, 35)( 37, 40)( 38, 39)( 41, 44)( 42, 43)( 45, 48)( 46, 47)
( 49, 52)( 50, 51)( 53, 56)( 54, 55)( 57, 60)( 58, 59)( 61, 64)( 62, 63)
( 65, 68)( 66, 67)( 69, 72)( 70, 71)( 73, 76)( 74, 75)( 77, 80)( 78, 79)
( 81, 84)( 82, 83)( 85, 88)( 86, 87)( 89, 92)( 90, 91)( 93, 96)( 94, 95)
( 97,100)( 98, 99)(101,104)(102,103)(105,108)(106,107)(109,112)(110,111)
(113,116)(114,115)(117,120)(118,119)(121,184)(122,183)(123,182)(124,181)
(125,188)(126,187)(127,186)(128,185)(129,192)(130,191)(131,190)(132,189)
(133,196)(134,195)(135,194)(136,193)(137,200)(138,199)(139,198)(140,197)
(141,204)(142,203)(143,202)(144,201)(145,208)(146,207)(147,206)(148,205)
(149,212)(150,211)(151,210)(152,209)(153,216)(154,215)(155,214)(156,213)
(157,220)(158,219)(159,218)(160,217)(161,224)(162,223)(163,222)(164,221)
(165,228)(166,227)(167,226)(168,225)(169,232)(170,231)(171,230)(172,229)
(173,236)(174,235)(175,234)(176,233)(177,240)(178,239)(179,238)(180,237);;
s3 := (  1,121)(  2,122)(  3,123)(  4,124)(  5,125)(  6,126)(  7,127)(  8,128)
(  9,129)( 10,130)( 11,131)( 12,132)( 13,133)( 14,134)( 15,135)( 16,136)
( 17,137)( 18,138)( 19,139)( 20,140)( 21,141)( 22,142)( 23,143)( 24,144)
( 25,145)( 26,146)( 27,147)( 28,148)( 29,149)( 30,150)( 31,151)( 32,152)
( 33,153)( 34,154)( 35,155)( 36,156)( 37,157)( 38,158)( 39,159)( 40,160)
( 41,161)( 42,162)( 43,163)( 44,164)( 45,165)( 46,166)( 47,167)( 48,168)
( 49,169)( 50,170)( 51,171)( 52,172)( 53,173)( 54,174)( 55,175)( 56,176)
( 57,177)( 58,178)( 59,179)( 60,180)( 61,181)( 62,182)( 63,183)( 64,184)
( 65,185)( 66,186)( 67,187)( 68,188)( 69,189)( 70,190)( 71,191)( 72,192)
( 73,193)( 74,194)( 75,195)( 76,196)( 77,197)( 78,198)( 79,199)( 80,200)
( 81,201)( 82,202)( 83,203)( 84,204)( 85,205)( 86,206)( 87,207)( 88,208)
( 89,209)( 90,210)( 91,211)( 92,212)( 93,213)( 94,214)( 95,215)( 96,216)
( 97,217)( 98,218)( 99,219)(100,220)(101,221)(102,222)(103,223)(104,224)
(105,225)(106,226)(107,227)(108,228)(109,229)(110,230)(111,231)(112,232)
(113,233)(114,234)(115,235)(116,236)(117,237)(118,238)(119,239)(120,240);;
s4 := (241,242);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(242)!(  2,  3)(  5, 17)(  6, 19)(  7, 18)(  8, 20)(  9, 13)( 10, 15)
( 11, 14)( 12, 16)( 21, 41)( 22, 43)( 23, 42)( 24, 44)( 25, 57)( 26, 59)
( 27, 58)( 28, 60)( 29, 53)( 30, 55)( 31, 54)( 32, 56)( 33, 49)( 34, 51)
( 35, 50)( 36, 52)( 37, 45)( 38, 47)( 39, 46)( 40, 48)( 62, 63)( 65, 77)
( 66, 79)( 67, 78)( 68, 80)( 69, 73)( 70, 75)( 71, 74)( 72, 76)( 81,101)
( 82,103)( 83,102)( 84,104)( 85,117)( 86,119)( 87,118)( 88,120)( 89,113)
( 90,115)( 91,114)( 92,116)( 93,109)( 94,111)( 95,110)( 96,112)( 97,105)
( 98,107)( 99,106)(100,108)(122,123)(125,137)(126,139)(127,138)(128,140)
(129,133)(130,135)(131,134)(132,136)(141,161)(142,163)(143,162)(144,164)
(145,177)(146,179)(147,178)(148,180)(149,173)(150,175)(151,174)(152,176)
(153,169)(154,171)(155,170)(156,172)(157,165)(158,167)(159,166)(160,168)
(182,183)(185,197)(186,199)(187,198)(188,200)(189,193)(190,195)(191,194)
(192,196)(201,221)(202,223)(203,222)(204,224)(205,237)(206,239)(207,238)
(208,240)(209,233)(210,235)(211,234)(212,236)(213,229)(214,231)(215,230)
(216,232)(217,225)(218,227)(219,226)(220,228);
s1 := Sym(242)!(  1, 25)(  2, 26)(  3, 28)(  4, 27)(  5, 21)(  6, 22)(  7, 24)
(  8, 23)(  9, 37)( 10, 38)( 11, 40)( 12, 39)( 13, 33)( 14, 34)( 15, 36)
( 16, 35)( 17, 29)( 18, 30)( 19, 32)( 20, 31)( 41, 45)( 42, 46)( 43, 48)
( 44, 47)( 49, 57)( 50, 58)( 51, 60)( 52, 59)( 55, 56)( 61, 85)( 62, 86)
( 63, 88)( 64, 87)( 65, 81)( 66, 82)( 67, 84)( 68, 83)( 69, 97)( 70, 98)
( 71,100)( 72, 99)( 73, 93)( 74, 94)( 75, 96)( 76, 95)( 77, 89)( 78, 90)
( 79, 92)( 80, 91)(101,105)(102,106)(103,108)(104,107)(109,117)(110,118)
(111,120)(112,119)(115,116)(121,145)(122,146)(123,148)(124,147)(125,141)
(126,142)(127,144)(128,143)(129,157)(130,158)(131,160)(132,159)(133,153)
(134,154)(135,156)(136,155)(137,149)(138,150)(139,152)(140,151)(161,165)
(162,166)(163,168)(164,167)(169,177)(170,178)(171,180)(172,179)(175,176)
(181,205)(182,206)(183,208)(184,207)(185,201)(186,202)(187,204)(188,203)
(189,217)(190,218)(191,220)(192,219)(193,213)(194,214)(195,216)(196,215)
(197,209)(198,210)(199,212)(200,211)(221,225)(222,226)(223,228)(224,227)
(229,237)(230,238)(231,240)(232,239)(235,236);
s2 := Sym(242)!(  1,  4)(  2,  3)(  5,  8)(  6,  7)(  9, 12)( 10, 11)( 13, 16)
( 14, 15)( 17, 20)( 18, 19)( 21, 24)( 22, 23)( 25, 28)( 26, 27)( 29, 32)
( 30, 31)( 33, 36)( 34, 35)( 37, 40)( 38, 39)( 41, 44)( 42, 43)( 45, 48)
( 46, 47)( 49, 52)( 50, 51)( 53, 56)( 54, 55)( 57, 60)( 58, 59)( 61, 64)
( 62, 63)( 65, 68)( 66, 67)( 69, 72)( 70, 71)( 73, 76)( 74, 75)( 77, 80)
( 78, 79)( 81, 84)( 82, 83)( 85, 88)( 86, 87)( 89, 92)( 90, 91)( 93, 96)
( 94, 95)( 97,100)( 98, 99)(101,104)(102,103)(105,108)(106,107)(109,112)
(110,111)(113,116)(114,115)(117,120)(118,119)(121,184)(122,183)(123,182)
(124,181)(125,188)(126,187)(127,186)(128,185)(129,192)(130,191)(131,190)
(132,189)(133,196)(134,195)(135,194)(136,193)(137,200)(138,199)(139,198)
(140,197)(141,204)(142,203)(143,202)(144,201)(145,208)(146,207)(147,206)
(148,205)(149,212)(150,211)(151,210)(152,209)(153,216)(154,215)(155,214)
(156,213)(157,220)(158,219)(159,218)(160,217)(161,224)(162,223)(163,222)
(164,221)(165,228)(166,227)(167,226)(168,225)(169,232)(170,231)(171,230)
(172,229)(173,236)(174,235)(175,234)(176,233)(177,240)(178,239)(179,238)
(180,237);
s3 := Sym(242)!(  1,121)(  2,122)(  3,123)(  4,124)(  5,125)(  6,126)(  7,127)
(  8,128)(  9,129)( 10,130)( 11,131)( 12,132)( 13,133)( 14,134)( 15,135)
( 16,136)( 17,137)( 18,138)( 19,139)( 20,140)( 21,141)( 22,142)( 23,143)
( 24,144)( 25,145)( 26,146)( 27,147)( 28,148)( 29,149)( 30,150)( 31,151)
( 32,152)( 33,153)( 34,154)( 35,155)( 36,156)( 37,157)( 38,158)( 39,159)
( 40,160)( 41,161)( 42,162)( 43,163)( 44,164)( 45,165)( 46,166)( 47,167)
( 48,168)( 49,169)( 50,170)( 51,171)( 52,172)( 53,173)( 54,174)( 55,175)
( 56,176)( 57,177)( 58,178)( 59,179)( 60,180)( 61,181)( 62,182)( 63,183)
( 64,184)( 65,185)( 66,186)( 67,187)( 68,188)( 69,189)( 70,190)( 71,191)
( 72,192)( 73,193)( 74,194)( 75,195)( 76,196)( 77,197)( 78,198)( 79,199)
( 80,200)( 81,201)( 82,202)( 83,203)( 84,204)( 85,205)( 86,206)( 87,207)
( 88,208)( 89,209)( 90,210)( 91,211)( 92,212)( 93,213)( 94,214)( 95,215)
( 96,216)( 97,217)( 98,218)( 99,219)(100,220)(101,221)(102,222)(103,223)
(104,224)(105,225)(106,226)(107,227)(108,228)(109,229)(110,230)(111,231)
(112,232)(113,233)(114,234)(115,235)(116,236)(117,237)(118,238)(119,239)
(120,240);
s4 := Sym(242)!(241,242);
poly := sub<Sym(242)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope