Polytope of Type {15,2,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {15,2,4,2}*480
if this polytope has a name.
Group : SmallGroup(480,1169)
Rank : 5
Schlafli Type : {15,2,4,2}
Number of vertices, edges, etc : 15, 15, 4, 4, 2
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {15,2,4,2,2} of size 960
   {15,2,4,2,3} of size 1440
   {15,2,4,2,4} of size 1920
Vertex Figure Of :
   {2,15,2,4,2} of size 960
   {4,15,2,4,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {15,2,2,2}*240
   3-fold quotients : {5,2,4,2}*160
   5-fold quotients : {3,2,4,2}*96
   6-fold quotients : {5,2,2,2}*80
   10-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {15,2,4,4}*960, {15,2,8,2}*960, {30,2,4,2}*960
   3-fold covers : {45,2,4,2}*1440, {15,2,12,2}*1440, {15,2,4,6}*1440a, {15,6,4,2}*1440
   4-fold covers : {15,2,4,8}*1920a, {15,2,8,4}*1920a, {15,2,4,8}*1920b, {15,2,8,4}*1920b, {15,2,4,4}*1920, {15,2,16,2}*1920, {30,2,4,4}*1920, {30,4,4,2}*1920, {60,2,4,2}*1920, {30,2,8,2}*1920, {15,4,4,2}*1920b
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);;
s2 := (17,18);;
s3 := (16,17)(18,19);;
s4 := (20,21);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(21)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13)(14,15);
s1 := Sym(21)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);
s2 := Sym(21)!(17,18);
s3 := Sym(21)!(16,17)(18,19);
s4 := Sym(21)!(20,21);
poly := sub<Sym(21)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope