Polytope of Type {4,15}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,15}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240395)
Rank : 3
Schlafli Type : {4,15}
Number of vertices, edges, etc : 64, 480, 240
Order of s0s1s2 : 15
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Halving Operation
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   4-fold quotients : {4,15}*480
   12-fold quotients : {4,5}*160
   16-fold quotients : {4,15}*120
   80-fold quotients : {4,3}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,41)( 2,42)( 3,43)( 4,44)( 5,45)( 6,46)( 7,47)( 8,48)( 9,33)(10,34)
(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,57)(18,58)(19,59)(20,60)(21,61)
(22,62)(23,63)(24,64)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)
(32,56);;
s1 := ( 3, 4)( 7, 8)( 9,14)(10,13)(11,15)(12,16)(19,20)(23,24)(25,30)(26,29)
(27,31)(28,32)(33,49)(34,50)(35,52)(36,51)(37,53)(38,54)(39,56)(40,55)(41,62)
(42,61)(43,63)(44,64)(45,58)(46,57)(47,59)(48,60);;
s2 := ( 2,10)( 3,11)( 5, 8)( 6,15)( 7,14)(13,16)(17,49)(18,58)(19,59)(20,52)
(21,56)(22,63)(23,62)(24,53)(25,57)(26,50)(27,51)(28,60)(29,64)(30,55)(31,54)
(32,61)(34,42)(35,43)(37,40)(38,47)(39,46)(45,48);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(64)!( 1,41)( 2,42)( 3,43)( 4,44)( 5,45)( 6,46)( 7,47)( 8,48)( 9,33)
(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,57)(18,58)(19,59)(20,60)
(21,61)(22,62)(23,63)(24,64)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)
(32,56);
s1 := Sym(64)!( 3, 4)( 7, 8)( 9,14)(10,13)(11,15)(12,16)(19,20)(23,24)(25,30)
(26,29)(27,31)(28,32)(33,49)(34,50)(35,52)(36,51)(37,53)(38,54)(39,56)(40,55)
(41,62)(42,61)(43,63)(44,64)(45,58)(46,57)(47,59)(48,60);
s2 := Sym(64)!( 2,10)( 3,11)( 5, 8)( 6,15)( 7,14)(13,16)(17,49)(18,58)(19,59)
(20,52)(21,56)(22,63)(23,62)(24,53)(25,57)(26,50)(27,51)(28,60)(29,64)(30,55)
(31,54)(32,61)(34,42)(35,43)(37,40)(38,47)(39,46)(45,48);
poly := sub<Sym(64)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope