include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,15,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,15,4}*1920a
if this polytope has a name.
Group : SmallGroup(1920,240395)
Rank : 4
Schlafli Type : {4,15,4}
Number of vertices, edges, etc : 16, 120, 120, 4
Order of s0s1s2s3 : 15
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)(17,25)(18,26)
(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45)
(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)
(56,64);;
s1 := ( 3, 4)( 7, 8)( 9,14)(10,13)(11,15)(12,16)(19,20)(23,24)(25,30)(26,29)
(27,31)(28,32)(33,49)(34,50)(35,52)(36,51)(37,53)(38,54)(39,56)(40,55)(41,62)
(42,61)(43,63)(44,64)(45,58)(46,57)(47,59)(48,60);;
s2 := ( 2,10)( 3,11)( 5, 8)( 6,15)( 7,14)(13,16)(17,49)(18,58)(19,59)(20,52)
(21,56)(22,63)(23,62)(24,53)(25,57)(26,50)(27,51)(28,60)(29,64)(30,55)(31,54)
(32,61)(34,42)(35,43)(37,40)(38,47)(39,46)(45,48);;
s3 := ( 1,17)( 2,18)( 3,19)( 4,20)( 5,21)( 6,22)( 7,23)( 8,24)( 9,25)(10,26)
(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(33,49)(34,50)(35,51)(36,52)(37,53)
(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)
(48,64);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3, s3*s2*s1*s3*s2*s3*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(64)!( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)(17,25)
(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)
(37,45)(38,46)(39,47)(40,48)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)
(56,64);
s1 := Sym(64)!( 3, 4)( 7, 8)( 9,14)(10,13)(11,15)(12,16)(19,20)(23,24)(25,30)
(26,29)(27,31)(28,32)(33,49)(34,50)(35,52)(36,51)(37,53)(38,54)(39,56)(40,55)
(41,62)(42,61)(43,63)(44,64)(45,58)(46,57)(47,59)(48,60);
s2 := Sym(64)!( 2,10)( 3,11)( 5, 8)( 6,15)( 7,14)(13,16)(17,49)(18,58)(19,59)
(20,52)(21,56)(22,63)(23,62)(24,53)(25,57)(26,50)(27,51)(28,60)(29,64)(30,55)
(31,54)(32,61)(34,42)(35,43)(37,40)(38,47)(39,46)(45,48);
s3 := Sym(64)!( 1,17)( 2,18)( 3,19)( 4,20)( 5,21)( 6,22)( 7,23)( 8,24)( 9,25)
(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(33,49)(34,50)(35,51)(36,52)
(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)
(48,64);
poly := sub<Sym(64)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s3*s2*s1*s3*s2*s3*s2*s1*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope