include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,15,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,15,4}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240395)
Rank : 4
Schlafli Type : {4,15,4}
Number of vertices, edges, etc : 4, 120, 120, 16
Order of s0s1s2s3 : 15
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,33)( 2,34)( 3,35)( 4,36)( 5,37)( 6,38)( 7,39)( 8,40)( 9,41)(10,42)
(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)
(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)
(32,64);;
s1 := ( 3, 4)( 7, 8)( 9,14)(10,13)(11,15)(12,16)(19,20)(23,24)(25,30)(26,29)
(27,31)(28,32)(33,49)(34,50)(35,52)(36,51)(37,53)(38,54)(39,56)(40,55)(41,62)
(42,61)(43,63)(44,64)(45,58)(46,57)(47,59)(48,60);;
s2 := ( 2,16)( 3, 6)( 4,11)( 5,14)( 7, 9)(12,13)(17,49)(18,64)(19,54)(20,59)
(21,62)(22,51)(23,57)(24,56)(25,55)(26,58)(27,52)(28,61)(29,60)(30,53)(31,63)
(32,50)(34,48)(35,38)(36,43)(37,46)(39,41)(44,45);;
s3 := ( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,15)(12,16)(17,21)(18,22)
(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)
(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)
(60,64);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s0*s1,
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2,
s1*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2*s3*s1*s2*s3*s1*s2*s3*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(64)!( 1,33)( 2,34)( 3,35)( 4,36)( 5,37)( 6,38)( 7,39)( 8,40)( 9,41)
(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)
(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)
(32,64);
s1 := Sym(64)!( 3, 4)( 7, 8)( 9,14)(10,13)(11,15)(12,16)(19,20)(23,24)(25,30)
(26,29)(27,31)(28,32)(33,49)(34,50)(35,52)(36,51)(37,53)(38,54)(39,56)(40,55)
(41,62)(42,61)(43,63)(44,64)(45,58)(46,57)(47,59)(48,60);
s2 := Sym(64)!( 2,16)( 3, 6)( 4,11)( 5,14)( 7, 9)(12,13)(17,49)(18,64)(19,54)
(20,59)(21,62)(22,51)(23,57)(24,56)(25,55)(26,58)(27,52)(28,61)(29,60)(30,53)
(31,63)(32,50)(34,48)(35,38)(36,43)(37,46)(39,41)(44,45);
s3 := Sym(64)!( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,15)(12,16)(17,21)
(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)
(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)
(60,64);
poly := sub<Sym(64)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s2*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2,
s1*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2*s3*s1*s2*s3*s1*s2*s3*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope