Polytope of Type {2,4,15,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,15,4}*1920a
if this polytope has a name.
Group : SmallGroup(1920,240412)
Rank : 5
Schlafli Type : {2,4,15,4}
Number of vertices, edges, etc : 2, 4, 60, 60, 8
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,4,15,4}*960
   4-fold quotients : {2,4,15,2}*480
   5-fold quotients : {2,4,3,4}*384a
   10-fold quotients : {2,4,3,4}*192
   20-fold quotients : {2,4,3,2}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  3, 11)(  4, 12)(  5, 13)(  6, 14)(  7, 15)(  8, 16)(  9, 17)( 10, 18)
( 19, 27)( 20, 28)( 21, 29)( 22, 30)( 23, 31)( 24, 32)( 25, 33)( 26, 34)
( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 47)( 40, 48)( 41, 49)( 42, 50)
( 51, 59)( 52, 60)( 53, 61)( 54, 62)( 55, 63)( 56, 64)( 57, 65)( 58, 66)
( 67, 75)( 68, 76)( 69, 77)( 70, 78)( 71, 79)( 72, 80)( 73, 81)( 74, 82)
( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)( 88, 96)( 89, 97)( 90, 98)
( 99,107)(100,108)(101,109)(102,110)(103,111)(104,112)(105,113)(106,114)
(115,123)(116,124)(117,125)(118,126)(119,127)(120,128)(121,129)(122,130)
(131,139)(132,140)(133,141)(134,142)(135,143)(136,144)(137,145)(138,146)
(147,155)(148,156)(149,157)(150,158)(151,159)(152,160)(153,161)(154,162)
(163,171)(164,172)(165,173)(166,174)(167,175)(168,176)(169,177)(170,178)
(179,187)(180,188)(181,189)(182,190)(183,191)(184,192)(185,193)(186,194)
(195,203)(196,204)(197,205)(198,206)(199,207)(200,208)(201,209)(202,210)
(211,219)(212,220)(213,221)(214,222)(215,223)(216,224)(217,225)(218,226)
(227,235)(228,236)(229,237)(230,238)(231,239)(232,240)(233,241)(234,242)
(243,251)(244,252)(245,253)(246,254)(247,255)(248,256)(249,257)(250,258)
(259,267)(260,268)(261,269)(262,270)(263,271)(264,272)(265,273)(266,274)
(275,283)(276,284)(277,285)(278,286)(279,287)(280,288)(281,289)(282,290)
(291,299)(292,300)(293,301)(294,302)(295,303)(296,304)(297,305)(298,306)
(307,315)(308,316)(309,317)(310,318)(311,319)(312,320)(313,321)(314,322)
(323,331)(324,332)(325,333)(326,334)(327,335)(328,336)(329,337)(330,338)
(339,347)(340,348)(341,349)(342,350)(343,351)(344,352)(345,353)(346,354)
(355,363)(356,364)(357,365)(358,366)(359,367)(360,368)(361,369)(362,370)
(371,379)(372,380)(373,381)(374,382)(375,383)(376,384)(377,385)(378,386)
(387,395)(388,396)(389,397)(390,398)(391,399)(392,400)(393,401)(394,402)
(403,411)(404,412)(405,413)(406,414)(407,415)(408,416)(409,417)(410,418)
(419,427)(420,428)(421,429)(422,430)(423,431)(424,432)(425,433)(426,434)
(435,443)(436,444)(437,445)(438,446)(439,447)(440,448)(441,449)(442,450)
(451,459)(452,460)(453,461)(454,462)(455,463)(456,464)(457,465)(458,466)
(467,475)(468,476)(469,477)(470,478)(471,479)(472,480)(473,481)(474,482);;
s2 := (  3, 83)(  4, 86)(  5, 85)(  6, 84)(  7, 91)(  8, 94)(  9, 93)( 10, 92)
( 11, 87)( 12, 90)( 13, 89)( 14, 88)( 15, 95)( 16, 98)( 17, 97)( 18, 96)
( 19,147)( 20,150)( 21,149)( 22,148)( 23,155)( 24,158)( 25,157)( 26,156)
( 27,151)( 28,154)( 29,153)( 30,152)( 31,159)( 32,162)( 33,161)( 34,160)
( 35,131)( 36,134)( 37,133)( 38,132)( 39,139)( 40,142)( 41,141)( 42,140)
( 43,135)( 44,138)( 45,137)( 46,136)( 47,143)( 48,146)( 49,145)( 50,144)
( 51,115)( 52,118)( 53,117)( 54,116)( 55,123)( 56,126)( 57,125)( 58,124)
( 59,119)( 60,122)( 61,121)( 62,120)( 63,127)( 64,130)( 65,129)( 66,128)
( 67, 99)( 68,102)( 69,101)( 70,100)( 71,107)( 72,110)( 73,109)( 74,108)
( 75,103)( 76,106)( 77,105)( 78,104)( 79,111)( 80,114)( 81,113)( 82,112)
(164,166)(167,171)(168,174)(169,173)(170,172)(176,178)(179,227)(180,230)
(181,229)(182,228)(183,235)(184,238)(185,237)(186,236)(187,231)(188,234)
(189,233)(190,232)(191,239)(192,242)(193,241)(194,240)(195,211)(196,214)
(197,213)(198,212)(199,219)(200,222)(201,221)(202,220)(203,215)(204,218)
(205,217)(206,216)(207,223)(208,226)(209,225)(210,224)(243,323)(244,326)
(245,325)(246,324)(247,331)(248,334)(249,333)(250,332)(251,327)(252,330)
(253,329)(254,328)(255,335)(256,338)(257,337)(258,336)(259,387)(260,390)
(261,389)(262,388)(263,395)(264,398)(265,397)(266,396)(267,391)(268,394)
(269,393)(270,392)(271,399)(272,402)(273,401)(274,400)(275,371)(276,374)
(277,373)(278,372)(279,379)(280,382)(281,381)(282,380)(283,375)(284,378)
(285,377)(286,376)(287,383)(288,386)(289,385)(290,384)(291,355)(292,358)
(293,357)(294,356)(295,363)(296,366)(297,365)(298,364)(299,359)(300,362)
(301,361)(302,360)(303,367)(304,370)(305,369)(306,368)(307,339)(308,342)
(309,341)(310,340)(311,347)(312,350)(313,349)(314,348)(315,343)(316,346)
(317,345)(318,344)(319,351)(320,354)(321,353)(322,352)(404,406)(407,411)
(408,414)(409,413)(410,412)(416,418)(419,467)(420,470)(421,469)(422,468)
(423,475)(424,478)(425,477)(426,476)(427,471)(428,474)(429,473)(430,472)
(431,479)(432,482)(433,481)(434,480)(435,451)(436,454)(437,453)(438,452)
(439,459)(440,462)(441,461)(442,460)(443,455)(444,458)(445,457)(446,456)
(447,463)(448,466)(449,465)(450,464);;
s3 := (  3, 19)(  4, 20)(  5, 22)(  6, 21)(  7, 31)(  8, 32)(  9, 34)( 10, 33)
( 11, 27)( 12, 28)( 13, 30)( 14, 29)( 15, 23)( 16, 24)( 17, 26)( 18, 25)
( 35, 67)( 36, 68)( 37, 70)( 38, 69)( 39, 79)( 40, 80)( 41, 82)( 42, 81)
( 43, 75)( 44, 76)( 45, 78)( 46, 77)( 47, 71)( 48, 72)( 49, 74)( 50, 73)
( 53, 54)( 55, 63)( 56, 64)( 57, 66)( 58, 65)( 61, 62)( 83,179)( 84,180)
( 85,182)( 86,181)( 87,191)( 88,192)( 89,194)( 90,193)( 91,187)( 92,188)
( 93,190)( 94,189)( 95,183)( 96,184)( 97,186)( 98,185)( 99,163)(100,164)
(101,166)(102,165)(103,175)(104,176)(105,178)(106,177)(107,171)(108,172)
(109,174)(110,173)(111,167)(112,168)(113,170)(114,169)(115,227)(116,228)
(117,230)(118,229)(119,239)(120,240)(121,242)(122,241)(123,235)(124,236)
(125,238)(126,237)(127,231)(128,232)(129,234)(130,233)(131,211)(132,212)
(133,214)(134,213)(135,223)(136,224)(137,226)(138,225)(139,219)(140,220)
(141,222)(142,221)(143,215)(144,216)(145,218)(146,217)(147,195)(148,196)
(149,198)(150,197)(151,207)(152,208)(153,210)(154,209)(155,203)(156,204)
(157,206)(158,205)(159,199)(160,200)(161,202)(162,201)(243,259)(244,260)
(245,262)(246,261)(247,271)(248,272)(249,274)(250,273)(251,267)(252,268)
(253,270)(254,269)(255,263)(256,264)(257,266)(258,265)(275,307)(276,308)
(277,310)(278,309)(279,319)(280,320)(281,322)(282,321)(283,315)(284,316)
(285,318)(286,317)(287,311)(288,312)(289,314)(290,313)(293,294)(295,303)
(296,304)(297,306)(298,305)(301,302)(323,419)(324,420)(325,422)(326,421)
(327,431)(328,432)(329,434)(330,433)(331,427)(332,428)(333,430)(334,429)
(335,423)(336,424)(337,426)(338,425)(339,403)(340,404)(341,406)(342,405)
(343,415)(344,416)(345,418)(346,417)(347,411)(348,412)(349,414)(350,413)
(351,407)(352,408)(353,410)(354,409)(355,467)(356,468)(357,470)(358,469)
(359,479)(360,480)(361,482)(362,481)(363,475)(364,476)(365,478)(366,477)
(367,471)(368,472)(369,474)(370,473)(371,451)(372,452)(373,454)(374,453)
(375,463)(376,464)(377,466)(378,465)(379,459)(380,460)(381,462)(382,461)
(383,455)(384,456)(385,458)(386,457)(387,435)(388,436)(389,438)(390,437)
(391,447)(392,448)(393,450)(394,449)(395,443)(396,444)(397,446)(398,445)
(399,439)(400,440)(401,442)(402,441);;
s4 := (  3,245)(  4,246)(  5,243)(  6,244)(  7,249)(  8,250)(  9,247)( 10,248)
( 11,253)( 12,254)( 13,251)( 14,252)( 15,257)( 16,258)( 17,255)( 18,256)
( 19,261)( 20,262)( 21,259)( 22,260)( 23,265)( 24,266)( 25,263)( 26,264)
( 27,269)( 28,270)( 29,267)( 30,268)( 31,273)( 32,274)( 33,271)( 34,272)
( 35,277)( 36,278)( 37,275)( 38,276)( 39,281)( 40,282)( 41,279)( 42,280)
( 43,285)( 44,286)( 45,283)( 46,284)( 47,289)( 48,290)( 49,287)( 50,288)
( 51,293)( 52,294)( 53,291)( 54,292)( 55,297)( 56,298)( 57,295)( 58,296)
( 59,301)( 60,302)( 61,299)( 62,300)( 63,305)( 64,306)( 65,303)( 66,304)
( 67,309)( 68,310)( 69,307)( 70,308)( 71,313)( 72,314)( 73,311)( 74,312)
( 75,317)( 76,318)( 77,315)( 78,316)( 79,321)( 80,322)( 81,319)( 82,320)
( 83,325)( 84,326)( 85,323)( 86,324)( 87,329)( 88,330)( 89,327)( 90,328)
( 91,333)( 92,334)( 93,331)( 94,332)( 95,337)( 96,338)( 97,335)( 98,336)
( 99,341)(100,342)(101,339)(102,340)(103,345)(104,346)(105,343)(106,344)
(107,349)(108,350)(109,347)(110,348)(111,353)(112,354)(113,351)(114,352)
(115,357)(116,358)(117,355)(118,356)(119,361)(120,362)(121,359)(122,360)
(123,365)(124,366)(125,363)(126,364)(127,369)(128,370)(129,367)(130,368)
(131,373)(132,374)(133,371)(134,372)(135,377)(136,378)(137,375)(138,376)
(139,381)(140,382)(141,379)(142,380)(143,385)(144,386)(145,383)(146,384)
(147,389)(148,390)(149,387)(150,388)(151,393)(152,394)(153,391)(154,392)
(155,397)(156,398)(157,395)(158,396)(159,401)(160,402)(161,399)(162,400)
(163,405)(164,406)(165,403)(166,404)(167,409)(168,410)(169,407)(170,408)
(171,413)(172,414)(173,411)(174,412)(175,417)(176,418)(177,415)(178,416)
(179,421)(180,422)(181,419)(182,420)(183,425)(184,426)(185,423)(186,424)
(187,429)(188,430)(189,427)(190,428)(191,433)(192,434)(193,431)(194,432)
(195,437)(196,438)(197,435)(198,436)(199,441)(200,442)(201,439)(202,440)
(203,445)(204,446)(205,443)(206,444)(207,449)(208,450)(209,447)(210,448)
(211,453)(212,454)(213,451)(214,452)(215,457)(216,458)(217,455)(218,456)
(219,461)(220,462)(221,459)(222,460)(223,465)(224,466)(225,463)(226,464)
(227,469)(228,470)(229,467)(230,468)(231,473)(232,474)(233,471)(234,472)
(235,477)(236,478)(237,475)(238,476)(239,481)(240,482)(241,479)(242,480);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4, 
s1*s2*s3*s2*s1*s2*s3*s1*s2, s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(482)!(1,2);
s1 := Sym(482)!(  3, 11)(  4, 12)(  5, 13)(  6, 14)(  7, 15)(  8, 16)(  9, 17)
( 10, 18)( 19, 27)( 20, 28)( 21, 29)( 22, 30)( 23, 31)( 24, 32)( 25, 33)
( 26, 34)( 35, 43)( 36, 44)( 37, 45)( 38, 46)( 39, 47)( 40, 48)( 41, 49)
( 42, 50)( 51, 59)( 52, 60)( 53, 61)( 54, 62)( 55, 63)( 56, 64)( 57, 65)
( 58, 66)( 67, 75)( 68, 76)( 69, 77)( 70, 78)( 71, 79)( 72, 80)( 73, 81)
( 74, 82)( 83, 91)( 84, 92)( 85, 93)( 86, 94)( 87, 95)( 88, 96)( 89, 97)
( 90, 98)( 99,107)(100,108)(101,109)(102,110)(103,111)(104,112)(105,113)
(106,114)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128)(121,129)
(122,130)(131,139)(132,140)(133,141)(134,142)(135,143)(136,144)(137,145)
(138,146)(147,155)(148,156)(149,157)(150,158)(151,159)(152,160)(153,161)
(154,162)(163,171)(164,172)(165,173)(166,174)(167,175)(168,176)(169,177)
(170,178)(179,187)(180,188)(181,189)(182,190)(183,191)(184,192)(185,193)
(186,194)(195,203)(196,204)(197,205)(198,206)(199,207)(200,208)(201,209)
(202,210)(211,219)(212,220)(213,221)(214,222)(215,223)(216,224)(217,225)
(218,226)(227,235)(228,236)(229,237)(230,238)(231,239)(232,240)(233,241)
(234,242)(243,251)(244,252)(245,253)(246,254)(247,255)(248,256)(249,257)
(250,258)(259,267)(260,268)(261,269)(262,270)(263,271)(264,272)(265,273)
(266,274)(275,283)(276,284)(277,285)(278,286)(279,287)(280,288)(281,289)
(282,290)(291,299)(292,300)(293,301)(294,302)(295,303)(296,304)(297,305)
(298,306)(307,315)(308,316)(309,317)(310,318)(311,319)(312,320)(313,321)
(314,322)(323,331)(324,332)(325,333)(326,334)(327,335)(328,336)(329,337)
(330,338)(339,347)(340,348)(341,349)(342,350)(343,351)(344,352)(345,353)
(346,354)(355,363)(356,364)(357,365)(358,366)(359,367)(360,368)(361,369)
(362,370)(371,379)(372,380)(373,381)(374,382)(375,383)(376,384)(377,385)
(378,386)(387,395)(388,396)(389,397)(390,398)(391,399)(392,400)(393,401)
(394,402)(403,411)(404,412)(405,413)(406,414)(407,415)(408,416)(409,417)
(410,418)(419,427)(420,428)(421,429)(422,430)(423,431)(424,432)(425,433)
(426,434)(435,443)(436,444)(437,445)(438,446)(439,447)(440,448)(441,449)
(442,450)(451,459)(452,460)(453,461)(454,462)(455,463)(456,464)(457,465)
(458,466)(467,475)(468,476)(469,477)(470,478)(471,479)(472,480)(473,481)
(474,482);
s2 := Sym(482)!(  3, 83)(  4, 86)(  5, 85)(  6, 84)(  7, 91)(  8, 94)(  9, 93)
( 10, 92)( 11, 87)( 12, 90)( 13, 89)( 14, 88)( 15, 95)( 16, 98)( 17, 97)
( 18, 96)( 19,147)( 20,150)( 21,149)( 22,148)( 23,155)( 24,158)( 25,157)
( 26,156)( 27,151)( 28,154)( 29,153)( 30,152)( 31,159)( 32,162)( 33,161)
( 34,160)( 35,131)( 36,134)( 37,133)( 38,132)( 39,139)( 40,142)( 41,141)
( 42,140)( 43,135)( 44,138)( 45,137)( 46,136)( 47,143)( 48,146)( 49,145)
( 50,144)( 51,115)( 52,118)( 53,117)( 54,116)( 55,123)( 56,126)( 57,125)
( 58,124)( 59,119)( 60,122)( 61,121)( 62,120)( 63,127)( 64,130)( 65,129)
( 66,128)( 67, 99)( 68,102)( 69,101)( 70,100)( 71,107)( 72,110)( 73,109)
( 74,108)( 75,103)( 76,106)( 77,105)( 78,104)( 79,111)( 80,114)( 81,113)
( 82,112)(164,166)(167,171)(168,174)(169,173)(170,172)(176,178)(179,227)
(180,230)(181,229)(182,228)(183,235)(184,238)(185,237)(186,236)(187,231)
(188,234)(189,233)(190,232)(191,239)(192,242)(193,241)(194,240)(195,211)
(196,214)(197,213)(198,212)(199,219)(200,222)(201,221)(202,220)(203,215)
(204,218)(205,217)(206,216)(207,223)(208,226)(209,225)(210,224)(243,323)
(244,326)(245,325)(246,324)(247,331)(248,334)(249,333)(250,332)(251,327)
(252,330)(253,329)(254,328)(255,335)(256,338)(257,337)(258,336)(259,387)
(260,390)(261,389)(262,388)(263,395)(264,398)(265,397)(266,396)(267,391)
(268,394)(269,393)(270,392)(271,399)(272,402)(273,401)(274,400)(275,371)
(276,374)(277,373)(278,372)(279,379)(280,382)(281,381)(282,380)(283,375)
(284,378)(285,377)(286,376)(287,383)(288,386)(289,385)(290,384)(291,355)
(292,358)(293,357)(294,356)(295,363)(296,366)(297,365)(298,364)(299,359)
(300,362)(301,361)(302,360)(303,367)(304,370)(305,369)(306,368)(307,339)
(308,342)(309,341)(310,340)(311,347)(312,350)(313,349)(314,348)(315,343)
(316,346)(317,345)(318,344)(319,351)(320,354)(321,353)(322,352)(404,406)
(407,411)(408,414)(409,413)(410,412)(416,418)(419,467)(420,470)(421,469)
(422,468)(423,475)(424,478)(425,477)(426,476)(427,471)(428,474)(429,473)
(430,472)(431,479)(432,482)(433,481)(434,480)(435,451)(436,454)(437,453)
(438,452)(439,459)(440,462)(441,461)(442,460)(443,455)(444,458)(445,457)
(446,456)(447,463)(448,466)(449,465)(450,464);
s3 := Sym(482)!(  3, 19)(  4, 20)(  5, 22)(  6, 21)(  7, 31)(  8, 32)(  9, 34)
( 10, 33)( 11, 27)( 12, 28)( 13, 30)( 14, 29)( 15, 23)( 16, 24)( 17, 26)
( 18, 25)( 35, 67)( 36, 68)( 37, 70)( 38, 69)( 39, 79)( 40, 80)( 41, 82)
( 42, 81)( 43, 75)( 44, 76)( 45, 78)( 46, 77)( 47, 71)( 48, 72)( 49, 74)
( 50, 73)( 53, 54)( 55, 63)( 56, 64)( 57, 66)( 58, 65)( 61, 62)( 83,179)
( 84,180)( 85,182)( 86,181)( 87,191)( 88,192)( 89,194)( 90,193)( 91,187)
( 92,188)( 93,190)( 94,189)( 95,183)( 96,184)( 97,186)( 98,185)( 99,163)
(100,164)(101,166)(102,165)(103,175)(104,176)(105,178)(106,177)(107,171)
(108,172)(109,174)(110,173)(111,167)(112,168)(113,170)(114,169)(115,227)
(116,228)(117,230)(118,229)(119,239)(120,240)(121,242)(122,241)(123,235)
(124,236)(125,238)(126,237)(127,231)(128,232)(129,234)(130,233)(131,211)
(132,212)(133,214)(134,213)(135,223)(136,224)(137,226)(138,225)(139,219)
(140,220)(141,222)(142,221)(143,215)(144,216)(145,218)(146,217)(147,195)
(148,196)(149,198)(150,197)(151,207)(152,208)(153,210)(154,209)(155,203)
(156,204)(157,206)(158,205)(159,199)(160,200)(161,202)(162,201)(243,259)
(244,260)(245,262)(246,261)(247,271)(248,272)(249,274)(250,273)(251,267)
(252,268)(253,270)(254,269)(255,263)(256,264)(257,266)(258,265)(275,307)
(276,308)(277,310)(278,309)(279,319)(280,320)(281,322)(282,321)(283,315)
(284,316)(285,318)(286,317)(287,311)(288,312)(289,314)(290,313)(293,294)
(295,303)(296,304)(297,306)(298,305)(301,302)(323,419)(324,420)(325,422)
(326,421)(327,431)(328,432)(329,434)(330,433)(331,427)(332,428)(333,430)
(334,429)(335,423)(336,424)(337,426)(338,425)(339,403)(340,404)(341,406)
(342,405)(343,415)(344,416)(345,418)(346,417)(347,411)(348,412)(349,414)
(350,413)(351,407)(352,408)(353,410)(354,409)(355,467)(356,468)(357,470)
(358,469)(359,479)(360,480)(361,482)(362,481)(363,475)(364,476)(365,478)
(366,477)(367,471)(368,472)(369,474)(370,473)(371,451)(372,452)(373,454)
(374,453)(375,463)(376,464)(377,466)(378,465)(379,459)(380,460)(381,462)
(382,461)(383,455)(384,456)(385,458)(386,457)(387,435)(388,436)(389,438)
(390,437)(391,447)(392,448)(393,450)(394,449)(395,443)(396,444)(397,446)
(398,445)(399,439)(400,440)(401,442)(402,441);
s4 := Sym(482)!(  3,245)(  4,246)(  5,243)(  6,244)(  7,249)(  8,250)(  9,247)
( 10,248)( 11,253)( 12,254)( 13,251)( 14,252)( 15,257)( 16,258)( 17,255)
( 18,256)( 19,261)( 20,262)( 21,259)( 22,260)( 23,265)( 24,266)( 25,263)
( 26,264)( 27,269)( 28,270)( 29,267)( 30,268)( 31,273)( 32,274)( 33,271)
( 34,272)( 35,277)( 36,278)( 37,275)( 38,276)( 39,281)( 40,282)( 41,279)
( 42,280)( 43,285)( 44,286)( 45,283)( 46,284)( 47,289)( 48,290)( 49,287)
( 50,288)( 51,293)( 52,294)( 53,291)( 54,292)( 55,297)( 56,298)( 57,295)
( 58,296)( 59,301)( 60,302)( 61,299)( 62,300)( 63,305)( 64,306)( 65,303)
( 66,304)( 67,309)( 68,310)( 69,307)( 70,308)( 71,313)( 72,314)( 73,311)
( 74,312)( 75,317)( 76,318)( 77,315)( 78,316)( 79,321)( 80,322)( 81,319)
( 82,320)( 83,325)( 84,326)( 85,323)( 86,324)( 87,329)( 88,330)( 89,327)
( 90,328)( 91,333)( 92,334)( 93,331)( 94,332)( 95,337)( 96,338)( 97,335)
( 98,336)( 99,341)(100,342)(101,339)(102,340)(103,345)(104,346)(105,343)
(106,344)(107,349)(108,350)(109,347)(110,348)(111,353)(112,354)(113,351)
(114,352)(115,357)(116,358)(117,355)(118,356)(119,361)(120,362)(121,359)
(122,360)(123,365)(124,366)(125,363)(126,364)(127,369)(128,370)(129,367)
(130,368)(131,373)(132,374)(133,371)(134,372)(135,377)(136,378)(137,375)
(138,376)(139,381)(140,382)(141,379)(142,380)(143,385)(144,386)(145,383)
(146,384)(147,389)(148,390)(149,387)(150,388)(151,393)(152,394)(153,391)
(154,392)(155,397)(156,398)(157,395)(158,396)(159,401)(160,402)(161,399)
(162,400)(163,405)(164,406)(165,403)(166,404)(167,409)(168,410)(169,407)
(170,408)(171,413)(172,414)(173,411)(174,412)(175,417)(176,418)(177,415)
(178,416)(179,421)(180,422)(181,419)(182,420)(183,425)(184,426)(185,423)
(186,424)(187,429)(188,430)(189,427)(190,428)(191,433)(192,434)(193,431)
(194,432)(195,437)(196,438)(197,435)(198,436)(199,441)(200,442)(201,439)
(202,440)(203,445)(204,446)(205,443)(206,444)(207,449)(208,450)(209,447)
(210,448)(211,453)(212,454)(213,451)(214,452)(215,457)(216,458)(217,455)
(218,456)(219,461)(220,462)(221,459)(222,460)(223,465)(224,466)(225,463)
(226,464)(227,469)(228,470)(229,467)(230,468)(231,473)(232,474)(233,471)
(234,472)(235,477)(236,478)(237,475)(238,476)(239,481)(240,482)(241,479)
(242,480);
poly := sub<Sym(482)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s3*s4*s3*s4*s3*s4*s3*s4, s1*s2*s3*s2*s1*s2*s3*s1*s2, 
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope