include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,15,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,15,4}*960
if this polytope has a name.
Group : SmallGroup(960,11381)
Rank : 5
Schlafli Type : {2,4,15,4}
Number of vertices, edges, etc : 2, 4, 30, 30, 4
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,4,15,4,2} of size 1920
Vertex Figure Of :
{2,2,4,15,4} of size 1920
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {2,4,3,4}*192
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,4,15,4}*1920a, {2,4,15,4}*1920b, {2,4,30,4}*1920d, {2,4,30,4}*1920e, {2,4,30,4}*1920f, {2,4,30,4}*1920g
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)( 9,17)(10,18)(19,27)(20,28)
(21,29)(22,30)(23,31)(24,32)(25,33)(26,34)(35,43)(36,44)(37,45)(38,46)(39,47)
(40,48)(41,49)(42,50)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64)(57,65)(58,66)
(67,75)(68,76)(69,77)(70,78)(71,79)(72,80)(73,81)(74,82);;
s2 := ( 4, 5)( 7,11)( 8,13)( 9,12)(10,14)(16,17)(19,67)(20,69)(21,68)(22,70)
(23,75)(24,77)(25,76)(26,78)(27,71)(28,73)(29,72)(30,74)(31,79)(32,81)(33,80)
(34,82)(35,51)(36,53)(37,52)(38,54)(39,59)(40,61)(41,60)(42,62)(43,55)(44,57)
(45,56)(46,58)(47,63)(48,65)(49,64)(50,66);;
s3 := ( 3,19)( 4,20)( 5,22)( 6,21)( 7,31)( 8,32)( 9,34)(10,33)(11,27)(12,28)
(13,30)(14,29)(15,23)(16,24)(17,26)(18,25)(35,67)(36,68)(37,70)(38,69)(39,79)
(40,80)(41,82)(42,81)(43,75)(44,76)(45,78)(46,77)(47,71)(48,72)(49,74)(50,73)
(53,54)(55,63)(56,64)(57,66)(58,65)(61,62);;
s4 := ( 3, 6)( 4, 5)( 7,10)( 8, 9)(11,14)(12,13)(15,18)(16,17)(19,22)(20,21)
(23,26)(24,25)(27,30)(28,29)(31,34)(32,33)(35,38)(36,37)(39,42)(40,41)(43,46)
(44,45)(47,50)(48,49)(51,54)(52,53)(55,58)(56,57)(59,62)(60,61)(63,66)(64,65)
(67,70)(68,69)(71,74)(72,73)(75,78)(76,77)(79,82)(80,81);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4,
s1*s2*s3*s2*s1*s2*s3*s1*s2, s4*s3*s2*s4*s3*s4*s3*s2*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(82)!(1,2);
s1 := Sym(82)!( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)( 9,17)(10,18)(19,27)
(20,28)(21,29)(22,30)(23,31)(24,32)(25,33)(26,34)(35,43)(36,44)(37,45)(38,46)
(39,47)(40,48)(41,49)(42,50)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64)(57,65)
(58,66)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80)(73,81)(74,82);
s2 := Sym(82)!( 4, 5)( 7,11)( 8,13)( 9,12)(10,14)(16,17)(19,67)(20,69)(21,68)
(22,70)(23,75)(24,77)(25,76)(26,78)(27,71)(28,73)(29,72)(30,74)(31,79)(32,81)
(33,80)(34,82)(35,51)(36,53)(37,52)(38,54)(39,59)(40,61)(41,60)(42,62)(43,55)
(44,57)(45,56)(46,58)(47,63)(48,65)(49,64)(50,66);
s3 := Sym(82)!( 3,19)( 4,20)( 5,22)( 6,21)( 7,31)( 8,32)( 9,34)(10,33)(11,27)
(12,28)(13,30)(14,29)(15,23)(16,24)(17,26)(18,25)(35,67)(36,68)(37,70)(38,69)
(39,79)(40,80)(41,82)(42,81)(43,75)(44,76)(45,78)(46,77)(47,71)(48,72)(49,74)
(50,73)(53,54)(55,63)(56,64)(57,66)(58,65)(61,62);
s4 := Sym(82)!( 3, 6)( 4, 5)( 7,10)( 8, 9)(11,14)(12,13)(15,18)(16,17)(19,22)
(20,21)(23,26)(24,25)(27,30)(28,29)(31,34)(32,33)(35,38)(36,37)(39,42)(40,41)
(43,46)(44,45)(47,50)(48,49)(51,54)(52,53)(55,58)(56,57)(59,62)(60,61)(63,66)
(64,65)(67,70)(68,69)(71,74)(72,73)(75,78)(76,77)(79,82)(80,81);
poly := sub<Sym(82)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4, s1*s2*s3*s2*s1*s2*s3*s1*s2,
s4*s3*s2*s4*s3*s4*s3*s2*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope