include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {16,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {16,10}*1920a
if this polytope has a name.
Group : SmallGroup(1920,240469)
Rank : 3
Schlafli Type : {16,10}
Number of vertices, edges, etc : 96, 480, 60
Order of s0s1s2 : 48
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {8,10}*960a
4-fold quotients : {4,10}*480a
8-fold quotients : {4,10}*240b
16-fold quotients : {4,5}*120
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 6,22)( 7,23)( 8,25)( 9,24)(10,28)(11,29)(12,26)(13,27)(14,34)
(15,35)(16,37)(17,36)(18,30)(19,31)(20,33)(21,32);;
s1 := ( 2, 3)( 4, 5)( 6,14)( 7,15)( 8,17)( 9,16)(10,20)(11,21)(12,18)(13,19)
(22,30)(23,31)(24,33)(25,32)(26,36)(27,37)(28,34)(29,35);;
s2 := (1,2)(3,4);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s0*s1*s2*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(37)!( 3, 4)( 6,22)( 7,23)( 8,25)( 9,24)(10,28)(11,29)(12,26)(13,27)
(14,34)(15,35)(16,37)(17,36)(18,30)(19,31)(20,33)(21,32);
s1 := Sym(37)!( 2, 3)( 4, 5)( 6,14)( 7,15)( 8,17)( 9,16)(10,20)(11,21)(12,18)
(13,19)(22,30)(23,31)(24,33)(25,32)(26,36)(27,37)(28,34)(29,35);
s2 := Sym(37)!(1,2)(3,4);
poly := sub<Sym(37)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s0*s1*s2*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope