include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,20}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,20}*1920g
if this polytope has a name.
Group : SmallGroup(1920,240508)
Rank : 3
Schlafli Type : {12,20}
Number of vertices, edges, etc : 48, 480, 80
Order of s0s1s2 : 20
Order of s0s1s2s1 : 10
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,20}*960c, {12,10}*960c
4-fold quotients : {6,20}*480a, {6,20}*480b, {12,10}*480c, {12,10}*480d, {6,10}*480c
8-fold quotients : {3,10}*240, {6,5}*240b, {6,10}*240c, {6,10}*240d, {6,10}*240e, {6,10}*240f
16-fold quotients : {3,5}*120, {3,10}*120a, {3,10}*120b, {6,5}*120b, {6,5}*120c
32-fold quotients : {3,5}*60
60-fold quotients : {4,4}*32
120-fold quotients : {2,4}*16, {4,2}*16
240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 6)( 2, 8)( 3, 7)( 4, 5)(10,11)(12,13);;
s1 := ( 1, 8)( 2, 5)( 3, 4)( 6, 7)( 9,12)(10,11);;
s2 := ( 1, 6)( 2, 7)( 3, 8)( 4, 5)(10,12)(11,13);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(13)!( 1, 6)( 2, 8)( 3, 7)( 4, 5)(10,11)(12,13);
s1 := Sym(13)!( 1, 8)( 2, 5)( 3, 4)( 6, 7)( 9,12)(10,11);
s2 := Sym(13)!( 1, 6)( 2, 7)( 3, 8)( 4, 5)(10,12)(11,13);
poly := sub<Sym(13)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope