Polytope of Type {6,20}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,20}*960c
if this polytope has a name.
Group : SmallGroup(960,10886)
Rank : 3
Schlafli Type : {6,20}
Number of vertices, edges, etc : 24, 240, 80
Order of s0s1s2 : 20
Order of s0s1s2s1 : 10
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,20,2} of size 1920
Vertex Figure Of :
   {2,6,20} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,20}*480a, {6,20}*480b, {6,10}*480c
   4-fold quotients : {3,10}*240, {6,5}*240b, {6,10}*240c, {6,10}*240d, {6,10}*240e, {6,10}*240f
   8-fold quotients : {3,5}*120, {3,10}*120a, {3,10}*120b, {6,5}*120b, {6,5}*120c
   16-fold quotients : {3,5}*60
   60-fold quotients : {2,4}*16
   120-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,20}*1920g, {6,40}*1920f, {6,20}*1920d, {12,20}*1920k, {6,40}*1920h
Permutation Representation (GAP) :
s0 := ( 1, 2)( 8, 9)(10,11);;
s1 := ( 4, 6)( 7, 8)(10,11);;
s2 := ( 3, 4)( 5, 6)( 8,10)( 9,11);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(11)!( 1, 2)( 8, 9)(10,11);
s1 := Sym(11)!( 4, 6)( 7, 8)(10,11);
s2 := Sym(11)!( 3, 4)( 5, 6)( 8,10)( 9,11);
poly := sub<Sym(11)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1 >; 
 
References : None.
to this polytope