include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,24}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,24}*1920c
if this polytope has a name.
Group : SmallGroup(1920,240558)
Rank : 3
Schlafli Type : {10,24}
Number of vertices, edges, etc : 40, 480, 96
Order of s0s1s2 : 8
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {10,24}*960a, {10,24}*960b, {10,12}*960b
4-fold quotients : {10,12}*480a, {10,12}*480b, {10,6}*480b
8-fold quotients : {5,6}*240a, {10,6}*240a, {10,6}*240b
16-fold quotients : {5,6}*120a
60-fold quotients : {2,8}*32
120-fold quotients : {2,4}*16
240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,16)( 2,14)( 3,13)( 4, 9)( 5,15)( 6, 8)( 7,12)(10,11)(18,21)(19,20);;
s1 := ( 1,16)( 2, 9)( 3, 8)( 4,14)( 5,12)( 6,13)( 7,15)(10,11)(17,20)(19,21);;
s2 := ( 1, 7)( 2, 6)( 3,15)( 4,10)( 5,13)( 8,14)( 9,11)(12,16)(18,21);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(21)!( 1,16)( 2,14)( 3,13)( 4, 9)( 5,15)( 6, 8)( 7,12)(10,11)(18,21)
(19,20);
s1 := Sym(21)!( 1,16)( 2, 9)( 3, 8)( 4,14)( 5,12)( 6,13)( 7,15)(10,11)(17,20)
(19,21);
s2 := Sym(21)!( 1, 7)( 2, 6)( 3,15)( 4,10)( 5,13)( 8,14)( 9,11)(12,16)(18,21);
poly := sub<Sym(21)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1 >;
References : None.
to this polytope