Polytope of Type {10,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,12}*960b
if this polytope has a name.
Group : SmallGroup(960,10882)
Rank : 3
Schlafli Type : {10,12}
Number of vertices, edges, etc : 40, 240, 48
Order of s0s1s2 : 4
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {10,12,2} of size 1920
Vertex Figure Of :
   {2,10,12} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {10,12}*480a, {10,12}*480b, {10,6}*480b
   4-fold quotients : {5,6}*240a, {10,6}*240a, {10,6}*240b
   8-fold quotients : {5,6}*120a
   60-fold quotients : {2,4}*16
   120-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {20,12}*1920f, {10,24}*1920c, {10,12}*1920b, {20,12}*1920h, {10,24}*1920e
Permutation Representation (GAP) :
s0 := ( 6, 7)( 8, 9)(10,11);;
s1 := (1,3)(2,4)(5,6)(7,8);;
s2 := (3,4)(8,9);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(11)!( 6, 7)( 8, 9)(10,11);
s1 := Sym(11)!(1,3)(2,4)(5,6)(7,8);
s2 := Sym(11)!(3,4)(8,9);
poly := sub<Sym(11)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope