include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,12}*1920c
if this polytope has a name.
Group : SmallGroup(1920,240806)
Rank : 3
Schlafli Type : {12,12}
Number of vertices, edges, etc : 80, 480, 80
Order of s0s1s2 : 12
Order of s0s1s2s1 : 20
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,12}*960a, {12,6}*960b
4-fold quotients : {12,6}*480a, {12,6}*480b, {6,6}*480
8-fold quotients : {6,6}*240a, {6,6}*240b, {6,6}*240c
16-fold quotients : {6,6}*120
120-fold quotients : {4,2}*16
240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 48)( 8, 47)( 9, 10)( 13, 14)( 15, 16)( 17, 51)( 18, 52)
( 19, 33)( 20, 34)( 21, 22)( 23, 49)( 24, 50)( 25, 46)( 26, 45)( 31, 37)
( 32, 38)( 35, 44)( 36, 43)( 39, 41)( 40, 42)( 55, 56)( 57, 58)( 59, 99)
( 60,100)( 63, 64)( 69,104)( 70,103)( 71, 86)( 72, 85)( 75,102)( 76,101)
( 77, 97)( 78, 98)( 79, 80)( 81, 82)( 83, 90)( 84, 89)( 87, 95)( 88, 96)
( 91, 94)( 92, 93);;
s1 := ( 1, 55)( 2, 56)( 3, 53)( 4, 54)( 5, 69)( 6, 70)( 7, 64)( 8, 63)
( 9, 84)( 10, 83)( 11, 59)( 12, 60)( 13,101)( 14,102)( 15, 97)( 16, 98)
( 17, 58)( 18, 57)( 19, 73)( 20, 74)( 21, 72)( 22, 71)( 23, 89)( 24, 90)
( 25, 86)( 26, 85)( 27, 92)( 28, 91)( 29, 88)( 30, 87)( 31, 61)( 32, 62)
( 33, 77)( 34, 78)( 35, 81)( 36, 82)( 37, 76)( 38, 75)( 39, 79)( 40, 80)
( 41, 99)( 42,100)( 43,103)( 44,104)( 45, 68)( 46, 67)( 47, 94)( 48, 93)
( 49, 66)( 50, 65)( 51, 96)( 52, 95);;
s2 := ( 1, 53)( 2, 54)( 3, 55)( 4, 56)( 5, 65)( 6, 66)( 7,100)( 8, 99)
( 9, 79)( 10, 80)( 11, 68)( 12, 67)( 13, 58)( 14, 57)( 15, 63)( 16, 64)
( 17,103)( 18,104)( 19, 86)( 20, 85)( 21, 81)( 22, 82)( 23, 77)( 24, 78)
( 25, 76)( 26, 75)( 27, 62)( 28, 61)( 29, 74)( 30, 73)( 31, 90)( 32, 89)
( 33, 71)( 34, 72)( 35, 92)( 36, 91)( 37, 83)( 38, 84)( 39, 87)( 40, 88)
( 41, 95)( 42, 96)( 43, 94)( 44, 93)( 45,102)( 46,101)( 47, 59)( 48, 60)
( 49, 97)( 50, 98)( 51, 70)( 52, 69);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(104)!( 3, 4)( 7, 48)( 8, 47)( 9, 10)( 13, 14)( 15, 16)( 17, 51)
( 18, 52)( 19, 33)( 20, 34)( 21, 22)( 23, 49)( 24, 50)( 25, 46)( 26, 45)
( 31, 37)( 32, 38)( 35, 44)( 36, 43)( 39, 41)( 40, 42)( 55, 56)( 57, 58)
( 59, 99)( 60,100)( 63, 64)( 69,104)( 70,103)( 71, 86)( 72, 85)( 75,102)
( 76,101)( 77, 97)( 78, 98)( 79, 80)( 81, 82)( 83, 90)( 84, 89)( 87, 95)
( 88, 96)( 91, 94)( 92, 93);
s1 := Sym(104)!( 1, 55)( 2, 56)( 3, 53)( 4, 54)( 5, 69)( 6, 70)( 7, 64)
( 8, 63)( 9, 84)( 10, 83)( 11, 59)( 12, 60)( 13,101)( 14,102)( 15, 97)
( 16, 98)( 17, 58)( 18, 57)( 19, 73)( 20, 74)( 21, 72)( 22, 71)( 23, 89)
( 24, 90)( 25, 86)( 26, 85)( 27, 92)( 28, 91)( 29, 88)( 30, 87)( 31, 61)
( 32, 62)( 33, 77)( 34, 78)( 35, 81)( 36, 82)( 37, 76)( 38, 75)( 39, 79)
( 40, 80)( 41, 99)( 42,100)( 43,103)( 44,104)( 45, 68)( 46, 67)( 47, 94)
( 48, 93)( 49, 66)( 50, 65)( 51, 96)( 52, 95);
s2 := Sym(104)!( 1, 53)( 2, 54)( 3, 55)( 4, 56)( 5, 65)( 6, 66)( 7,100)
( 8, 99)( 9, 79)( 10, 80)( 11, 68)( 12, 67)( 13, 58)( 14, 57)( 15, 63)
( 16, 64)( 17,103)( 18,104)( 19, 86)( 20, 85)( 21, 81)( 22, 82)( 23, 77)
( 24, 78)( 25, 76)( 26, 75)( 27, 62)( 28, 61)( 29, 74)( 30, 73)( 31, 90)
( 32, 89)( 33, 71)( 34, 72)( 35, 92)( 36, 91)( 37, 83)( 38, 84)( 39, 87)
( 40, 88)( 41, 95)( 42, 96)( 43, 94)( 44, 93)( 45,102)( 46,101)( 47, 59)
( 48, 60)( 49, 97)( 50, 98)( 51, 70)( 52, 69);
poly := sub<Sym(104)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope