Polytope of Type {2,20,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,20,4}*1920c
if this polytope has a name.
Group : SmallGroup(1920,240809)
Rank : 4
Schlafli Type : {2,20,4}
Number of vertices, edges, etc : 2, 120, 240, 24
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,10,4}*960b
   4-fold quotients : {2,10,4}*480a
   8-fold quotients : {2,5,4}*240
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4,11)( 5,16)( 6,38)( 7,22)( 8,31)( 9,39)(12,37)(14,30)(15,29)(17,45)
(19,21)(20,27)(23,28)(24,36)(25,32)(33,48)(34,46)(35,49)(41,50)(42,43);;
s2 := ( 3, 5)( 4, 9)( 6,46)( 7,41)( 8,43)(10,16)(11,49)(12,33)(13,27)(14,29)
(15,50)(17,47)(18,25)(19,28)(20,40)(21,31)(22,37)(23,36)(24,35)(26,42)(30,38)
(32,34)(39,45)(44,48);;
s3 := ( 3,18)( 4,50)( 5,36)( 6,35)( 7,28)( 8,45)( 9,42)(10,44)(11,41)(12,32)
(13,26)(14,21)(15,27)(16,24)(17,31)(19,30)(20,29)(22,23)(25,37)(33,34)(38,49)
(39,43)(40,47)(46,48);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(50)!(1,2);
s1 := Sym(50)!( 4,11)( 5,16)( 6,38)( 7,22)( 8,31)( 9,39)(12,37)(14,30)(15,29)
(17,45)(19,21)(20,27)(23,28)(24,36)(25,32)(33,48)(34,46)(35,49)(41,50)(42,43);
s2 := Sym(50)!( 3, 5)( 4, 9)( 6,46)( 7,41)( 8,43)(10,16)(11,49)(12,33)(13,27)
(14,29)(15,50)(17,47)(18,25)(19,28)(20,40)(21,31)(22,37)(23,36)(24,35)(26,42)
(30,38)(32,34)(39,45)(44,48);
s3 := Sym(50)!( 3,18)( 4,50)( 5,36)( 6,35)( 7,28)( 8,45)( 9,42)(10,44)(11,41)
(12,32)(13,26)(14,21)(15,27)(16,24)(17,31)(19,30)(20,29)(22,23)(25,37)(33,34)
(38,49)(39,43)(40,47)(46,48);
poly := sub<Sym(50)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3 >; 
 

to this polytope