Polytope of Type {4,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,10}*1920
if this polytope has a name.
Group : SmallGroup(1920,240816)
Rank : 3
Schlafli Type : {4,10}
Number of vertices, edges, etc : 96, 480, 240
Order of s0s1s2 : 24
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Halving Operation
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,10}*960
   4-fold quotients : {4,10}*480a, {4,10}*480b, {4,10}*480c
   8-fold quotients : {4,5}*240, {4,10}*240a, {4,10}*240b
   16-fold quotients : {4,5}*120
   120-fold quotients : {4,2}*16
   240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,49)( 2,50)( 3,51)( 4,52)( 5,53)( 6,54)( 7,55)( 8,56)( 9,57)(10,58)
(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)
(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)
(33,81)(34,82)(35,83)(36,84)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,91)
(44,92)(45,93)(46,94)(47,95)(48,96);;
s1 := ( 1,52)( 2,55)( 3,58)( 4,49)( 5,62)( 6,59)( 7,50)( 8,67)( 9,69)(10,61)
(11,74)(12,75)(13,65)(14,53)(15,80)(16,81)(17,51)(18,85)(19,77)(20,83)(21,76)
(22,79)(23,88)(24,90)(25,86)(26,78)(27,60)(28,89)(29,92)(30,54)(31,71)(32,91)
(33,87)(34,68)(35,84)(36,82)(37,94)(38,72)(39,95)(40,70)(41,57)(42,73)(43,96)
(44,56)(45,66)(46,93)(47,64)(48,63);;
s2 := ( 1,20)( 2,18)( 3, 9)( 4,32)( 5,31)( 6,16)( 7,41)( 8,28)(10,23)(11,25)
(12,42)(13,29)(14,47)(15,39)(17,35)(19,27)(21,44)(26,43)(30,37)(33,48)(49,68)
(50,66)(51,57)(52,80)(53,79)(54,64)(55,89)(56,76)(58,71)(59,73)(60,90)(61,77)
(62,95)(63,87)(65,83)(67,75)(69,92)(74,91)(78,85)(81,96);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s2*s0*s1*s0 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(96)!( 1,49)( 2,50)( 3,51)( 4,52)( 5,53)( 6,54)( 7,55)( 8,56)( 9,57)
(10,58)(11,59)(12,60)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)
(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)
(32,80)(33,81)(34,82)(35,83)(36,84)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)
(43,91)(44,92)(45,93)(46,94)(47,95)(48,96);
s1 := Sym(96)!( 1,52)( 2,55)( 3,58)( 4,49)( 5,62)( 6,59)( 7,50)( 8,67)( 9,69)
(10,61)(11,74)(12,75)(13,65)(14,53)(15,80)(16,81)(17,51)(18,85)(19,77)(20,83)
(21,76)(22,79)(23,88)(24,90)(25,86)(26,78)(27,60)(28,89)(29,92)(30,54)(31,71)
(32,91)(33,87)(34,68)(35,84)(36,82)(37,94)(38,72)(39,95)(40,70)(41,57)(42,73)
(43,96)(44,56)(45,66)(46,93)(47,64)(48,63);
s2 := Sym(96)!( 1,20)( 2,18)( 3, 9)( 4,32)( 5,31)( 6,16)( 7,41)( 8,28)(10,23)
(11,25)(12,42)(13,29)(14,47)(15,39)(17,35)(19,27)(21,44)(26,43)(30,37)(33,48)
(49,68)(50,66)(51,57)(52,80)(53,79)(54,64)(55,89)(56,76)(58,71)(59,73)(60,90)
(61,77)(62,95)(63,87)(65,83)(67,75)(69,92)(74,91)(78,85)(81,96);
poly := sub<Sym(96)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1, 
s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s2*s0*s1*s0 >; 
 
References : None.
to this polytope