Polytope of Type {10,10}

Atlas Canonical Name : {10,10}*960
if this polytope has a name.
Group : SmallGroup(960,10891)
Rank : 3
Schlafli Type : {10,10}
Number of vertices, edges, etc : 48, 240, 48
Order of s0s1s2 : 6
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{10,10,2} of size 1920
Vertex Figure Of :
{2,10,10} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {10,10}*480
4-fold quotients : {5,10}*240, {10,5}*240, {10,10}*240a, {10,10}*240b, {10,10}*240c, {10,10}*240d
8-fold quotients : {5,5}*120, {5,10}*120a, {5,10}*120b, {10,5}*120a, {10,5}*120b
16-fold quotients : {5,5}*60
120-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {10,20}*1920, {20,10}*1920
Permutation Representation (GAP) :
```s0 := ( 2,27)( 3,19)( 4,15)( 7,22)( 8,48)( 9,28)(10,43)(11,25)(12,47)(13,35)
(14,37)(16,32)(18,21)(23,42)(24,26)(29,36)(30,45)(31,33)(40,41)(44,46);;
s1 := ( 2,10)( 3,11)( 7,37)( 8,23)( 9,25)(12,26)(13,27)(14,28)(18,35)(19,22)
(20,47)(21,33)(24,40)(29,41)(30,42)(31,43)(34,46)(36,38)(39,45)(44,48);;
s2 := ( 1,20)( 2,23)( 3,45)( 4, 7)( 5,39)( 6,38)( 8,10)( 9,40)(11,26)(12,33)
(13,36)(14,46)(15,22)(16,21)(17,34)(18,32)(19,30)(24,25)(27,42)(28,41)(29,35)
(31,47)(37,44)(43,48);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s2*s1*s0*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(48)!( 2,27)( 3,19)( 4,15)( 7,22)( 8,48)( 9,28)(10,43)(11,25)(12,47)
(13,35)(14,37)(16,32)(18,21)(23,42)(24,26)(29,36)(30,45)(31,33)(40,41)(44,46);
s1 := Sym(48)!( 2,10)( 3,11)( 7,37)( 8,23)( 9,25)(12,26)(13,27)(14,28)(18,35)
(19,22)(20,47)(21,33)(24,40)(29,41)(30,42)(31,43)(34,46)(36,38)(39,45)(44,48);
s2 := Sym(48)!( 1,20)( 2,23)( 3,45)( 4, 7)( 5,39)( 6,38)( 8,10)( 9,40)(11,26)
(12,33)(13,36)(14,46)(15,22)(16,21)(17,34)(18,32)(19,30)(24,25)(27,42)(28,41)
(29,35)(31,47)(37,44)(43,48);
poly := sub<Sym(48)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s2*s1*s0*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1 >;

```
References : None.
to this polytope