Polytope of Type {6,40}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,40}*1920g
if this polytope has a name.
Group : SmallGroup(1920,240864)
Rank : 3
Schlafli Type : {6,40}
Number of vertices, edges, etc : 24, 480, 160
Order of s0s1s2 : 4
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,20}*960a
   4-fold quotients : {6,10}*480b
   8-fold quotients : {6,5}*240a, {6,10}*240a, {6,10}*240b
   16-fold quotients : {6,5}*120a
   120-fold quotients : {2,4}*16
   240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,19)( 2,26)( 3,10)( 4,33)( 5,34)( 6,35)( 7,38)( 8,16)( 9,42)(11,20)
(12,21)(13,22)(14,48)(15,24)(17,27)(18,29)(23,36)(25,40)(28,32)(30,45)(31,46)
(37,44)(39,41)(43,47)(49,84)(50,70)(51,78)(52,72)(53,64)(54,68)(55,75)(56,66)
(57,58)(59,79)(60,89)(61,95)(62,69)(63,73)(65,80)(67,94)(71,85)(74,93)(76,82)
(77,86)(81,87)(83,92)(88,96)(90,91);;
s1 := ( 1,58)( 2,64)( 3,67)( 4,68)( 5,69)( 6,70)( 7,72)( 8,74)( 9,75)(10,89)
(11,81)(12,82)(13,83)(14,84)(15,86)(16,79)(17,90)(18,62)(19,87)(20,80)(21,95)
(22,73)(23,96)(24,78)(25,54)(26,94)(27,85)(28,59)(29,71)(30,55)(31,50)(32,52)
(33,76)(34,91)(35,88)(36,66)(37,57)(38,93)(39,51)(40,61)(41,49)(42,92)(43,60)
(44,65)(45,63)(46,56)(47,53)(48,77);;
s2 := ( 1,50)( 2,55)( 3,76)( 4,49)( 5,52)( 6,57)( 7,62)( 8,87)( 9,53)(10,82)
(11,91)(12,92)(13,77)(14,54)(15,94)(16,81)(17,88)(18,89)(19,70)(20,90)(21,83)
(22,86)(23,93)(24,67)(25,79)(26,75)(27,96)(28,63)(29,60)(30,80)(31,95)(32,73)
(33,84)(34,72)(35,58)(36,74)(37,78)(38,69)(39,71)(40,59)(41,85)(42,64)(43,56)
(44,51)(45,65)(46,61)(47,66)(48,68);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(96)!( 1,19)( 2,26)( 3,10)( 4,33)( 5,34)( 6,35)( 7,38)( 8,16)( 9,42)
(11,20)(12,21)(13,22)(14,48)(15,24)(17,27)(18,29)(23,36)(25,40)(28,32)(30,45)
(31,46)(37,44)(39,41)(43,47)(49,84)(50,70)(51,78)(52,72)(53,64)(54,68)(55,75)
(56,66)(57,58)(59,79)(60,89)(61,95)(62,69)(63,73)(65,80)(67,94)(71,85)(74,93)
(76,82)(77,86)(81,87)(83,92)(88,96)(90,91);
s1 := Sym(96)!( 1,58)( 2,64)( 3,67)( 4,68)( 5,69)( 6,70)( 7,72)( 8,74)( 9,75)
(10,89)(11,81)(12,82)(13,83)(14,84)(15,86)(16,79)(17,90)(18,62)(19,87)(20,80)
(21,95)(22,73)(23,96)(24,78)(25,54)(26,94)(27,85)(28,59)(29,71)(30,55)(31,50)
(32,52)(33,76)(34,91)(35,88)(36,66)(37,57)(38,93)(39,51)(40,61)(41,49)(42,92)
(43,60)(44,65)(45,63)(46,56)(47,53)(48,77);
s2 := Sym(96)!( 1,50)( 2,55)( 3,76)( 4,49)( 5,52)( 6,57)( 7,62)( 8,87)( 9,53)
(10,82)(11,91)(12,92)(13,77)(14,54)(15,94)(16,81)(17,88)(18,89)(19,70)(20,90)
(21,83)(22,86)(23,93)(24,67)(25,79)(26,75)(27,96)(28,63)(29,60)(30,80)(31,95)
(32,73)(33,84)(34,72)(35,58)(36,74)(37,78)(38,69)(39,71)(40,59)(41,85)(42,64)
(43,56)(44,51)(45,65)(46,61)(47,66)(48,68);
poly := sub<Sym(96)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1 >; 
 
References : None.
to this polytope