Polytope of Type {6,5}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,5}*120a
if this polytope has a name.
Group : SmallGroup(120,34)
Rank : 3
Schlafli Type : {6,5}
Number of vertices, edges, etc : 12, 30, 10
Order of s0s1s2 : 4
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {6,5,2} of size 240
   {6,5,4} of size 1920
Vertex Figure Of :
   {2,6,5} of size 240
   {4,6,5} of size 480
   {6,6,5} of size 720
   {8,6,5} of size 960
   {10,6,5} of size 1200
   {12,6,5} of size 1440
   {14,6,5} of size 1680
   {16,6,5} of size 1920
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {6,5}*240a, {6,10}*240a, {6,10}*240b
   4-fold covers : {6,5}*480, {6,10}*480a, {12,10}*480a, {12,10}*480b, {6,10}*480b
   6-fold covers : {6,10}*720a, {6,15}*720a, {6,15}*720b
   8-fold covers : {24,10}*960a, {24,10}*960b, {6,10}*960a, {12,10}*960a, {6,20}*960a, {6,20}*960b, {12,10}*960b
   10-fold covers : {6,5}*1200a, {30,5}*1200a, {30,10}*1200a
   12-fold covers : {12,10}*1440c, {12,10}*1440d, {6,15}*1440a, {6,15}*1440b, {6,30}*1440a, {6,30}*1440b, {6,10}*1440e, {6,30}*1440c, {6,30}*1440d
   14-fold covers : {6,35}*1680b, {42,10}*1680a
   16-fold covers : {48,10}*1920a, {48,10}*1920b, {12,20}*1920f, {24,10}*1920c, {6,40}*1920e, {12,10}*1920b, {12,20}*1920h, {24,10}*1920e, {12,20}*1920i, {12,20}*1920j, {6,20}*1920c, {6,40}*1920g, {6,5}*1920a, {12,5}*1920a, {12,5}*1920b
Permutation Representation (GAP) :
s0 := (4,5);;
s1 := (1,2)(3,4);;
s2 := (2,3)(4,5);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s0*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(5)!(4,5);
s1 := Sym(5)!(1,2)(3,4);
s2 := Sym(5)!(2,3)(4,5);
poly := sub<Sym(5)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s0*s1*s2 >; 
 
References : None.
to this polytope