include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,20}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,20}*1920d
if this polytope has a name.
Group : SmallGroup(1920,240872)
Rank : 3
Schlafli Type : {6,20}
Number of vertices, edges, etc : 48, 480, 160
Order of s0s1s2 : 20
Order of s0s1s2s1 : 20
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,20}*960c, {6,20}*960d, {6,10}*960b
4-fold quotients : {6,20}*480a, {6,20}*480b, {3,20}*480, {6,10}*480c
8-fold quotients : {3,10}*240, {6,5}*240b, {6,10}*240c, {6,10}*240d, {6,10}*240e, {6,10}*240f
16-fold quotients : {3,5}*120, {3,10}*120a, {3,10}*120b, {6,5}*120b, {6,5}*120c
32-fold quotients : {3,5}*60
120-fold quotients : {2,4}*16
240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,31)( 2,32)( 3,29)( 4,30)( 5,39)( 6,40)( 7,37)( 8,38)( 9,36)(10,35)
(11,34)(12,33)(13,50)(14,49)(15,46)(16,45)(17,43)(18,44)(19,51)(20,52)(21,41)
(22,42)(23,48)(24,47)(25,55)(26,56)(27,54)(28,53);;
s1 := ( 1,29)( 2,30)( 3,31)( 4,32)( 5,41)( 6,42)( 7,54)( 8,53)( 9,45)(10,46)
(11,51)(12,52)(13,34)(14,33)(15,56)(16,55)(17,38)(18,37)(19,49)(20,50)(21,48)
(22,47)(23,40)(24,39)(25,35)(26,36)(27,43)(28,44);;
s2 := ( 3, 4)( 7,10)( 8, 9)(11,12)(13,15)(14,16)(17,22)(18,21)(23,24)(25,28)
(26,27)(29,30)(33,34)(35,37)(36,38)(41,44)(42,43)(45,49)(46,50)(47,48)(53,55)
(54,56);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(56)!( 1,31)( 2,32)( 3,29)( 4,30)( 5,39)( 6,40)( 7,37)( 8,38)( 9,36)
(10,35)(11,34)(12,33)(13,50)(14,49)(15,46)(16,45)(17,43)(18,44)(19,51)(20,52)
(21,41)(22,42)(23,48)(24,47)(25,55)(26,56)(27,54)(28,53);
s1 := Sym(56)!( 1,29)( 2,30)( 3,31)( 4,32)( 5,41)( 6,42)( 7,54)( 8,53)( 9,45)
(10,46)(11,51)(12,52)(13,34)(14,33)(15,56)(16,55)(17,38)(18,37)(19,49)(20,50)
(21,48)(22,47)(23,40)(24,39)(25,35)(26,36)(27,43)(28,44);
s2 := Sym(56)!( 3, 4)( 7,10)( 8, 9)(11,12)(13,15)(14,16)(17,22)(18,21)(23,24)
(25,28)(26,27)(29,30)(33,34)(35,37)(36,38)(41,44)(42,43)(45,49)(46,50)(47,48)
(53,55)(54,56);
poly := sub<Sym(56)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1 >;
References : None.
to this polytope