Polytope of Type {2,2,8,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,8,6}*1920b
if this polytope has a name.
Group : SmallGroup(1920,240973)
Rank : 5
Schlafli Type : {2,2,8,6}
Number of vertices, edges, etc : 2, 2, 40, 120, 30
Order of s0s1s2s3s4 : 10
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,4,6}*960c
   4-fold quotients : {2,2,4,6}*480
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 5,15)( 6,28)( 7,13)( 8,14)( 9,16)(10,29)(11,44)(12,43)(17,23)(18,40)
(19,31)(20,32)(21,22)(24,26)(30,39)(33,42)(34,41)(35,36)(37,38);;
s3 := ( 7,19)( 8,11)(12,14)(13,20)(15,23)(16,40)(17,30)(18,21)(22,28)(24,36)
(25,37)(26,38)(27,35)(29,39)(31,34)(32,33)(41,44)(42,43);;
s4 := ( 5,10)( 7, 8)(11,21)(12,30)(13,14)(15,29)(17,19)(18,20)(22,44)(23,31)
(24,26)(32,40)(33,35)(34,38)(36,42)(37,41)(39,43);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s2*s3*s2*s3*s4*s3*s2*s3*s2*s3, 
s4*s3*s2*s4*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s4*s3*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(44)!(1,2);
s1 := Sym(44)!(3,4);
s2 := Sym(44)!( 5,15)( 6,28)( 7,13)( 8,14)( 9,16)(10,29)(11,44)(12,43)(17,23)
(18,40)(19,31)(20,32)(21,22)(24,26)(30,39)(33,42)(34,41)(35,36)(37,38);
s3 := Sym(44)!( 7,19)( 8,11)(12,14)(13,20)(15,23)(16,40)(17,30)(18,21)(22,28)
(24,36)(25,37)(26,38)(27,35)(29,39)(31,34)(32,33)(41,44)(42,43);
s4 := Sym(44)!( 5,10)( 7, 8)(11,21)(12,30)(13,14)(15,29)(17,19)(18,20)(22,44)
(23,31)(24,26)(32,40)(33,35)(34,38)(36,42)(37,41)(39,43);
poly := sub<Sym(44)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s2*s3*s2*s3*s4*s3*s2*s3*s2*s3, 
s4*s3*s2*s4*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s4*s3*s2 >; 
 

to this polytope