include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,8,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,8,6}*960b
if this polytope has a name.
Group : SmallGroup(960,10869)
Rank : 4
Schlafli Type : {2,8,6}
Number of vertices, edges, etc : 2, 40, 120, 30
Order of s0s1s2s3 : 10
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,8,6,2} of size 1920
Vertex Figure Of :
{2,2,8,6} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,6}*480c
4-fold quotients : {2,4,6}*240
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,8,6}*1920a
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3,13)( 4,26)( 5,11)( 6,12)( 7,14)( 8,27)( 9,42)(10,41)(15,21)(16,38)
(17,29)(18,30)(19,20)(22,24)(28,37)(31,40)(32,39)(33,34)(35,36);;
s2 := ( 5,17)( 6, 9)(10,12)(11,18)(13,21)(14,38)(15,28)(16,19)(20,26)(22,34)
(23,35)(24,36)(25,33)(27,37)(29,32)(30,31)(39,42)(40,41);;
s3 := ( 3, 8)( 5, 6)( 9,19)(10,28)(11,12)(13,27)(15,17)(16,18)(20,42)(21,29)
(22,24)(30,38)(31,33)(32,36)(34,40)(35,39)(37,41);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2,
s3*s2*s1*s3*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s3*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(42)!(1,2);
s1 := Sym(42)!( 3,13)( 4,26)( 5,11)( 6,12)( 7,14)( 8,27)( 9,42)(10,41)(15,21)
(16,38)(17,29)(18,30)(19,20)(22,24)(28,37)(31,40)(32,39)(33,34)(35,36);
s2 := Sym(42)!( 5,17)( 6, 9)(10,12)(11,18)(13,21)(14,38)(15,28)(16,19)(20,26)
(22,34)(23,35)(24,36)(25,33)(27,37)(29,32)(30,31)(39,42)(40,41);
s3 := Sym(42)!( 3, 8)( 5, 6)( 9,19)(10,28)(11,12)(13,27)(15,17)(16,18)(20,42)
(21,29)(22,24)(30,38)(31,33)(32,36)(34,40)(35,39)(37,41);
poly := sub<Sym(42)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2,
s3*s2*s1*s3*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s3*s2*s1 >;
to this polytope