Polytope of Type {10,10,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,10,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,240990)
Rank : 4
Schlafli Type : {10,10,2}
Number of vertices, edges, etc : 48, 240, 48, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {10,10,2}*960
   4-fold quotients : {5,10,2}*480, {10,5,2}*480, {10,10,2}*480a, {10,10,2}*480b, {10,10,2}*480c, {10,10,2}*480d
   8-fold quotients : {5,5,2}*240, {5,10,2}*240a, {5,10,2}*240b, {10,5,2}*240a, {10,5,2}*240b
   16-fold quotients : {5,5,2}*120
   120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2,27)( 3,19)( 4,15)( 7,22)( 8,48)( 9,28)(10,43)(11,25)(12,47)(13,35)
(14,37)(16,32)(18,21)(23,42)(24,26)(29,36)(30,45)(31,33)(40,41)(44,46);;
s1 := ( 2,10)( 3,11)( 7,37)( 8,23)( 9,25)(12,26)(13,27)(14,28)(18,35)(19,22)
(20,47)(21,33)(24,40)(29,41)(30,42)(31,43)(34,46)(36,38)(39,45)(44,48);;
s2 := ( 1,20)( 2,23)( 3,45)( 4, 7)( 5,39)( 6,38)( 8,10)( 9,40)(11,26)(12,33)
(13,36)(14,46)(15,22)(16,21)(17,34)(18,32)(19,30)(24,25)(27,42)(28,41)(29,35)
(31,47)(37,44)(43,48);;
s3 := (49,50);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s2*s1*s0*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(50)!( 2,27)( 3,19)( 4,15)( 7,22)( 8,48)( 9,28)(10,43)(11,25)(12,47)
(13,35)(14,37)(16,32)(18,21)(23,42)(24,26)(29,36)(30,45)(31,33)(40,41)(44,46);
s1 := Sym(50)!( 2,10)( 3,11)( 7,37)( 8,23)( 9,25)(12,26)(13,27)(14,28)(18,35)
(19,22)(20,47)(21,33)(24,40)(29,41)(30,42)(31,43)(34,46)(36,38)(39,45)(44,48);
s2 := Sym(50)!( 1,20)( 2,23)( 3,45)( 4, 7)( 5,39)( 6,38)( 8,10)( 9,40)(11,26)
(12,33)(13,36)(14,46)(15,22)(16,21)(17,34)(18,32)(19,30)(24,25)(27,42)(28,41)
(29,35)(31,47)(37,44)(43,48);
s3 := Sym(50)!(49,50);
poly := sub<Sym(50)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s2*s1*s0*s2*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope