Polytope of Type {10,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,10}*1920
if this polytope has a name.
Group : SmallGroup(1920,240995)
Rank : 3
Schlafli Type : {10,10}
Number of vertices, edges, etc : 96, 480, 96
Order of s0s1s2 : 6
Order of s0s1s2s1 : 3
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   32-fold quotients : {5,5}*60
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 2)( 3, 4)( 5, 9)( 6,12)( 7,11)( 8,10)(13,18)(14,19)(15,17)(16,20);;
s1 := ( 1, 5)( 2, 7)( 3, 8)( 4, 6)( 9,14)(10,13)(11,15)(12,16)(17,20)(18,19);;
s2 := ( 1, 4)( 2, 3)( 5,13)( 6,14)( 7,15)( 8,16)( 9,18)(10,20)(11,17)(12,19);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2, 
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2, 
s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(20)!( 1, 2)( 3, 4)( 5, 9)( 6,12)( 7,11)( 8,10)(13,18)(14,19)(15,17)
(16,20);
s1 := Sym(20)!( 1, 5)( 2, 7)( 3, 8)( 4, 6)( 9,14)(10,13)(11,15)(12,16)(17,20)
(18,19);
s2 := Sym(20)!( 1, 4)( 2, 3)( 5,13)( 6,14)( 7,15)( 8,16)( 9,18)(10,20)(11,17)
(12,19);
poly := sub<Sym(20)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2, 
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2, 
s0*s1*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope