Polytope of Type {20,24}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {20,24}*1920b
if this polytope has a name.
Group : SmallGroup(1920,42355)
Rank : 3
Schlafli Type : {20,24}
Number of vertices, edges, etc : 40, 480, 48
Order of s0s1s2 : 60
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {20,12}*960a
   3-fold quotients : {20,8}*640b
   4-fold quotients : {20,12}*480
   5-fold quotients : {4,24}*384b
   6-fold quotients : {20,4}*320
   8-fold quotients : {10,12}*240, {20,6}*240a
   10-fold quotients : {4,12}*192a
   12-fold quotients : {20,4}*160
   15-fold quotients : {4,8}*128b
   16-fold quotients : {10,6}*120
   20-fold quotients : {4,12}*96a
   24-fold quotients : {20,2}*80, {10,4}*80
   30-fold quotients : {4,4}*64
   40-fold quotients : {2,12}*48, {4,6}*48a
   48-fold quotients : {10,2}*40
   60-fold quotients : {4,4}*32
   80-fold quotients : {2,6}*24
   96-fold quotients : {5,2}*20
   120-fold quotients : {2,4}*16, {4,2}*16
   160-fold quotients : {2,3}*12
   240-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,121)(  2,125)(  3,124)(  4,123)(  5,122)(  6,126)(  7,130)(  8,129)
(  9,128)( 10,127)( 11,131)( 12,135)( 13,134)( 14,133)( 15,132)( 16,136)
( 17,140)( 18,139)( 19,138)( 20,137)( 21,141)( 22,145)( 23,144)( 24,143)
( 25,142)( 26,146)( 27,150)( 28,149)( 29,148)( 30,147)( 31,151)( 32,155)
( 33,154)( 34,153)( 35,152)( 36,156)( 37,160)( 38,159)( 39,158)( 40,157)
( 41,161)( 42,165)( 43,164)( 44,163)( 45,162)( 46,166)( 47,170)( 48,169)
( 49,168)( 50,167)( 51,171)( 52,175)( 53,174)( 54,173)( 55,172)( 56,176)
( 57,180)( 58,179)( 59,178)( 60,177)( 61,181)( 62,185)( 63,184)( 64,183)
( 65,182)( 66,186)( 67,190)( 68,189)( 69,188)( 70,187)( 71,191)( 72,195)
( 73,194)( 74,193)( 75,192)( 76,196)( 77,200)( 78,199)( 79,198)( 80,197)
( 81,201)( 82,205)( 83,204)( 84,203)( 85,202)( 86,206)( 87,210)( 88,209)
( 89,208)( 90,207)( 91,211)( 92,215)( 93,214)( 94,213)( 95,212)( 96,216)
( 97,220)( 98,219)( 99,218)(100,217)(101,221)(102,225)(103,224)(104,223)
(105,222)(106,226)(107,230)(108,229)(109,228)(110,227)(111,231)(112,235)
(113,234)(114,233)(115,232)(116,236)(117,240)(118,239)(119,238)(120,237);;
s1 := (  1,  2)(  3,  5)(  6, 12)(  7, 11)(  8, 15)(  9, 14)( 10, 13)( 16, 17)
( 18, 20)( 21, 27)( 22, 26)( 23, 30)( 24, 29)( 25, 28)( 31, 47)( 32, 46)
( 33, 50)( 34, 49)( 35, 48)( 36, 57)( 37, 56)( 38, 60)( 39, 59)( 40, 58)
( 41, 52)( 42, 51)( 43, 55)( 44, 54)( 45, 53)( 61, 62)( 63, 65)( 66, 72)
( 67, 71)( 68, 75)( 69, 74)( 70, 73)( 76, 77)( 78, 80)( 81, 87)( 82, 86)
( 83, 90)( 84, 89)( 85, 88)( 91,107)( 92,106)( 93,110)( 94,109)( 95,108)
( 96,117)( 97,116)( 98,120)( 99,119)(100,118)(101,112)(102,111)(103,115)
(104,114)(105,113)(121,182)(122,181)(123,185)(124,184)(125,183)(126,192)
(127,191)(128,195)(129,194)(130,193)(131,187)(132,186)(133,190)(134,189)
(135,188)(136,197)(137,196)(138,200)(139,199)(140,198)(141,207)(142,206)
(143,210)(144,209)(145,208)(146,202)(147,201)(148,205)(149,204)(150,203)
(151,227)(152,226)(153,230)(154,229)(155,228)(156,237)(157,236)(158,240)
(159,239)(160,238)(161,232)(162,231)(163,235)(164,234)(165,233)(166,212)
(167,211)(168,215)(169,214)(170,213)(171,222)(172,221)(173,225)(174,224)
(175,223)(176,217)(177,216)(178,220)(179,219)(180,218);;
s2 := (  1,126)(  2,127)(  3,128)(  4,129)(  5,130)(  6,121)(  7,122)(  8,123)
(  9,124)( 10,125)( 11,131)( 12,132)( 13,133)( 14,134)( 15,135)( 16,141)
( 17,142)( 18,143)( 19,144)( 20,145)( 21,136)( 22,137)( 23,138)( 24,139)
( 25,140)( 26,146)( 27,147)( 28,148)( 29,149)( 30,150)( 31,156)( 32,157)
( 33,158)( 34,159)( 35,160)( 36,151)( 37,152)( 38,153)( 39,154)( 40,155)
( 41,161)( 42,162)( 43,163)( 44,164)( 45,165)( 46,171)( 47,172)( 48,173)
( 49,174)( 50,175)( 51,166)( 52,167)( 53,168)( 54,169)( 55,170)( 56,176)
( 57,177)( 58,178)( 59,179)( 60,180)( 61,231)( 62,232)( 63,233)( 64,234)
( 65,235)( 66,226)( 67,227)( 68,228)( 69,229)( 70,230)( 71,236)( 72,237)
( 73,238)( 74,239)( 75,240)( 76,216)( 77,217)( 78,218)( 79,219)( 80,220)
( 81,211)( 82,212)( 83,213)( 84,214)( 85,215)( 86,221)( 87,222)( 88,223)
( 89,224)( 90,225)( 91,201)( 92,202)( 93,203)( 94,204)( 95,205)( 96,196)
( 97,197)( 98,198)( 99,199)(100,200)(101,206)(102,207)(103,208)(104,209)
(105,210)(106,186)(107,187)(108,188)(109,189)(110,190)(111,181)(112,182)
(113,183)(114,184)(115,185)(116,191)(117,192)(118,193)(119,194)(120,195);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(240)!(  1,121)(  2,125)(  3,124)(  4,123)(  5,122)(  6,126)(  7,130)
(  8,129)(  9,128)( 10,127)( 11,131)( 12,135)( 13,134)( 14,133)( 15,132)
( 16,136)( 17,140)( 18,139)( 19,138)( 20,137)( 21,141)( 22,145)( 23,144)
( 24,143)( 25,142)( 26,146)( 27,150)( 28,149)( 29,148)( 30,147)( 31,151)
( 32,155)( 33,154)( 34,153)( 35,152)( 36,156)( 37,160)( 38,159)( 39,158)
( 40,157)( 41,161)( 42,165)( 43,164)( 44,163)( 45,162)( 46,166)( 47,170)
( 48,169)( 49,168)( 50,167)( 51,171)( 52,175)( 53,174)( 54,173)( 55,172)
( 56,176)( 57,180)( 58,179)( 59,178)( 60,177)( 61,181)( 62,185)( 63,184)
( 64,183)( 65,182)( 66,186)( 67,190)( 68,189)( 69,188)( 70,187)( 71,191)
( 72,195)( 73,194)( 74,193)( 75,192)( 76,196)( 77,200)( 78,199)( 79,198)
( 80,197)( 81,201)( 82,205)( 83,204)( 84,203)( 85,202)( 86,206)( 87,210)
( 88,209)( 89,208)( 90,207)( 91,211)( 92,215)( 93,214)( 94,213)( 95,212)
( 96,216)( 97,220)( 98,219)( 99,218)(100,217)(101,221)(102,225)(103,224)
(104,223)(105,222)(106,226)(107,230)(108,229)(109,228)(110,227)(111,231)
(112,235)(113,234)(114,233)(115,232)(116,236)(117,240)(118,239)(119,238)
(120,237);
s1 := Sym(240)!(  1,  2)(  3,  5)(  6, 12)(  7, 11)(  8, 15)(  9, 14)( 10, 13)
( 16, 17)( 18, 20)( 21, 27)( 22, 26)( 23, 30)( 24, 29)( 25, 28)( 31, 47)
( 32, 46)( 33, 50)( 34, 49)( 35, 48)( 36, 57)( 37, 56)( 38, 60)( 39, 59)
( 40, 58)( 41, 52)( 42, 51)( 43, 55)( 44, 54)( 45, 53)( 61, 62)( 63, 65)
( 66, 72)( 67, 71)( 68, 75)( 69, 74)( 70, 73)( 76, 77)( 78, 80)( 81, 87)
( 82, 86)( 83, 90)( 84, 89)( 85, 88)( 91,107)( 92,106)( 93,110)( 94,109)
( 95,108)( 96,117)( 97,116)( 98,120)( 99,119)(100,118)(101,112)(102,111)
(103,115)(104,114)(105,113)(121,182)(122,181)(123,185)(124,184)(125,183)
(126,192)(127,191)(128,195)(129,194)(130,193)(131,187)(132,186)(133,190)
(134,189)(135,188)(136,197)(137,196)(138,200)(139,199)(140,198)(141,207)
(142,206)(143,210)(144,209)(145,208)(146,202)(147,201)(148,205)(149,204)
(150,203)(151,227)(152,226)(153,230)(154,229)(155,228)(156,237)(157,236)
(158,240)(159,239)(160,238)(161,232)(162,231)(163,235)(164,234)(165,233)
(166,212)(167,211)(168,215)(169,214)(170,213)(171,222)(172,221)(173,225)
(174,224)(175,223)(176,217)(177,216)(178,220)(179,219)(180,218);
s2 := Sym(240)!(  1,126)(  2,127)(  3,128)(  4,129)(  5,130)(  6,121)(  7,122)
(  8,123)(  9,124)( 10,125)( 11,131)( 12,132)( 13,133)( 14,134)( 15,135)
( 16,141)( 17,142)( 18,143)( 19,144)( 20,145)( 21,136)( 22,137)( 23,138)
( 24,139)( 25,140)( 26,146)( 27,147)( 28,148)( 29,149)( 30,150)( 31,156)
( 32,157)( 33,158)( 34,159)( 35,160)( 36,151)( 37,152)( 38,153)( 39,154)
( 40,155)( 41,161)( 42,162)( 43,163)( 44,164)( 45,165)( 46,171)( 47,172)
( 48,173)( 49,174)( 50,175)( 51,166)( 52,167)( 53,168)( 54,169)( 55,170)
( 56,176)( 57,177)( 58,178)( 59,179)( 60,180)( 61,231)( 62,232)( 63,233)
( 64,234)( 65,235)( 66,226)( 67,227)( 68,228)( 69,229)( 70,230)( 71,236)
( 72,237)( 73,238)( 74,239)( 75,240)( 76,216)( 77,217)( 78,218)( 79,219)
( 80,220)( 81,211)( 82,212)( 83,213)( 84,214)( 85,215)( 86,221)( 87,222)
( 88,223)( 89,224)( 90,225)( 91,201)( 92,202)( 93,203)( 94,204)( 95,205)
( 96,196)( 97,197)( 98,198)( 99,199)(100,200)(101,206)(102,207)(103,208)
(104,209)(105,210)(106,186)(107,187)(108,188)(109,189)(110,190)(111,181)
(112,182)(113,183)(114,184)(115,185)(116,191)(117,192)(118,193)(119,194)
(120,195);
poly := sub<Sym(240)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope