Polytope of Type {4,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,8}*128b
if this polytope has a name.
Group : SmallGroup(128,928)
Rank : 3
Schlafli Type : {4,8}
Number of vertices, edges, etc : 8, 32, 16
Order of s0s1s2 : 4
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {4,8,2} of size 256
   {4,8,4} of size 512
   {4,8,4} of size 512
   {4,8,6} of size 768
   {4,8,3} of size 768
   {4,8,3} of size 768
   {4,8,10} of size 1280
   {4,8,14} of size 1792
Vertex Figure Of :
   {2,4,8} of size 256
   {4,4,8} of size 512
   {6,4,8} of size 768
   {10,4,8} of size 1280
   {14,4,8} of size 1792
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,4}*64
   4-fold quotients : {4,4}*32
   8-fold quotients : {2,4}*16, {4,2}*16
   16-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,8}*256a, {8,8}*256b, {8,8}*256d, {4,8}*256b, {4,8}*256d, {8,8}*256e, {8,8}*256g
   3-fold covers : {4,24}*384b, {12,8}*384b
   4-fold covers : {4,16}*512a, {16,8}*512a, {16,8}*512b, {8,8}*512c, {4,8}*512a, {8,8}*512d, {8,8}*512e, {8,8}*512g, {4,16}*512b, {4,8}*512b, {4,8}*512c, {8,8}*512h, {8,8}*512i, {8,8}*512j, {8,8}*512k, {8,8}*512m, {8,8}*512o, {4,16}*512c, {4,16}*512d, {8,8}*512q, {8,8}*512s, {16,8}*512g, {16,8}*512h, {4,16}*512e, {4,16}*512f
   5-fold covers : {4,40}*640b, {20,8}*640b
   6-fold covers : {8,24}*768b, {12,8}*768a, {24,8}*768b, {4,24}*768a, {8,24}*768c, {24,8}*768d, {4,24}*768b, {12,8}*768b, {8,24}*768e, {4,24}*768d, {12,8}*768d, {24,8}*768f, {8,24}*768g, {24,8}*768h
   7-fold covers : {4,56}*896b, {28,8}*896b
   9-fold covers : {4,72}*1152b, {36,8}*1152b, {12,24}*1152d, {12,24}*1152e, {12,24}*1152f, {4,8}*1152b, {12,8}*1152b, {4,24}*1152b
   10-fold covers : {8,40}*1280b, {20,8}*1280a, {40,8}*1280b, {4,40}*1280a, {8,40}*1280c, {40,8}*1280d, {4,40}*1280b, {20,8}*1280b, {8,40}*1280e, {4,40}*1280d, {20,8}*1280d, {40,8}*1280f, {8,40}*1280g, {40,8}*1280h
   11-fold covers : {4,88}*1408b, {44,8}*1408b
   13-fold covers : {4,104}*1664b, {52,8}*1664b
   14-fold covers : {8,56}*1792b, {28,8}*1792a, {56,8}*1792b, {4,56}*1792a, {8,56}*1792c, {56,8}*1792d, {4,56}*1792b, {28,8}*1792b, {8,56}*1792e, {4,56}*1792d, {28,8}*1792d, {56,8}*1792f, {8,56}*1792g, {56,8}*1792h
   15-fold covers : {4,120}*1920b, {60,8}*1920b, {12,40}*1920b, {20,24}*1920b
Permutation Representation (GAP) :
s0 := ( 5, 7)( 6, 8)(13,15)(14,16);;
s1 := ( 3, 4)( 7, 8)( 9,13)(10,14)(11,16)(12,15);;
s2 := ( 1, 9)( 2,10)( 3,11)( 4,12)( 5,15)( 6,16)( 7,13)( 8,14);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(16)!( 5, 7)( 6, 8)(13,15)(14,16);
s1 := Sym(16)!( 3, 4)( 7, 8)( 9,13)(10,14)(11,16)(12,15);
s2 := Sym(16)!( 1, 9)( 2,10)( 3,11)( 4,12)( 5,15)( 6,16)( 7,13)( 8,14);
poly := sub<Sym(16)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 >; 
 
References : None.
to this polytope