Polytope of Type {4,22,11}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,22,11}*1936
if this polytope has a name.
Group : SmallGroup(1936,134)
Rank : 4
Schlafli Type : {4,22,11}
Number of vertices, edges, etc : 4, 44, 121, 11
Order of s0s1s2s3 : 44
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,22,11}*968
   11-fold quotients : {4,2,11}*176
   22-fold quotients : {2,2,11}*88
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,243)(  2,244)(  3,245)(  4,246)(  5,247)(  6,248)(  7,249)(  8,250)
(  9,251)( 10,252)( 11,253)( 12,254)( 13,255)( 14,256)( 15,257)( 16,258)
( 17,259)( 18,260)( 19,261)( 20,262)( 21,263)( 22,264)( 23,265)( 24,266)
( 25,267)( 26,268)( 27,269)( 28,270)( 29,271)( 30,272)( 31,273)( 32,274)
( 33,275)( 34,276)( 35,277)( 36,278)( 37,279)( 38,280)( 39,281)( 40,282)
( 41,283)( 42,284)( 43,285)( 44,286)( 45,287)( 46,288)( 47,289)( 48,290)
( 49,291)( 50,292)( 51,293)( 52,294)( 53,295)( 54,296)( 55,297)( 56,298)
( 57,299)( 58,300)( 59,301)( 60,302)( 61,303)( 62,304)( 63,305)( 64,306)
( 65,307)( 66,308)( 67,309)( 68,310)( 69,311)( 70,312)( 71,313)( 72,314)
( 73,315)( 74,316)( 75,317)( 76,318)( 77,319)( 78,320)( 79,321)( 80,322)
( 81,323)( 82,324)( 83,325)( 84,326)( 85,327)( 86,328)( 87,329)( 88,330)
( 89,331)( 90,332)( 91,333)( 92,334)( 93,335)( 94,336)( 95,337)( 96,338)
( 97,339)( 98,340)( 99,341)(100,342)(101,343)(102,344)(103,345)(104,346)
(105,347)(106,348)(107,349)(108,350)(109,351)(110,352)(111,353)(112,354)
(113,355)(114,356)(115,357)(116,358)(117,359)(118,360)(119,361)(120,362)
(121,363)(122,364)(123,365)(124,366)(125,367)(126,368)(127,369)(128,370)
(129,371)(130,372)(131,373)(132,374)(133,375)(134,376)(135,377)(136,378)
(137,379)(138,380)(139,381)(140,382)(141,383)(142,384)(143,385)(144,386)
(145,387)(146,388)(147,389)(148,390)(149,391)(150,392)(151,393)(152,394)
(153,395)(154,396)(155,397)(156,398)(157,399)(158,400)(159,401)(160,402)
(161,403)(162,404)(163,405)(164,406)(165,407)(166,408)(167,409)(168,410)
(169,411)(170,412)(171,413)(172,414)(173,415)(174,416)(175,417)(176,418)
(177,419)(178,420)(179,421)(180,422)(181,423)(182,424)(183,425)(184,426)
(185,427)(186,428)(187,429)(188,430)(189,431)(190,432)(191,433)(192,434)
(193,435)(194,436)(195,437)(196,438)(197,439)(198,440)(199,441)(200,442)
(201,443)(202,444)(203,445)(204,446)(205,447)(206,448)(207,449)(208,450)
(209,451)(210,452)(211,453)(212,454)(213,455)(214,456)(215,457)(216,458)
(217,459)(218,460)(219,461)(220,462)(221,463)(222,464)(223,465)(224,466)
(225,467)(226,468)(227,469)(228,470)(229,471)(230,472)(231,473)(232,474)
(233,475)(234,476)(235,477)(236,478)(237,479)(238,480)(239,481)(240,482)
(241,483)(242,484);;
s1 := ( 12,111)( 13,112)( 14,113)( 15,114)( 16,115)( 17,116)( 18,117)( 19,118)
( 20,119)( 21,120)( 22,121)( 23,100)( 24,101)( 25,102)( 26,103)( 27,104)
( 28,105)( 29,106)( 30,107)( 31,108)( 32,109)( 33,110)( 34, 89)( 35, 90)
( 36, 91)( 37, 92)( 38, 93)( 39, 94)( 40, 95)( 41, 96)( 42, 97)( 43, 98)
( 44, 99)( 45, 78)( 46, 79)( 47, 80)( 48, 81)( 49, 82)( 50, 83)( 51, 84)
( 52, 85)( 53, 86)( 54, 87)( 55, 88)( 56, 67)( 57, 68)( 58, 69)( 59, 70)
( 60, 71)( 61, 72)( 62, 73)( 63, 74)( 64, 75)( 65, 76)( 66, 77)(133,232)
(134,233)(135,234)(136,235)(137,236)(138,237)(139,238)(140,239)(141,240)
(142,241)(143,242)(144,221)(145,222)(146,223)(147,224)(148,225)(149,226)
(150,227)(151,228)(152,229)(153,230)(154,231)(155,210)(156,211)(157,212)
(158,213)(159,214)(160,215)(161,216)(162,217)(163,218)(164,219)(165,220)
(166,199)(167,200)(168,201)(169,202)(170,203)(171,204)(172,205)(173,206)
(174,207)(175,208)(176,209)(177,188)(178,189)(179,190)(180,191)(181,192)
(182,193)(183,194)(184,195)(185,196)(186,197)(187,198)(243,364)(244,365)
(245,366)(246,367)(247,368)(248,369)(249,370)(250,371)(251,372)(252,373)
(253,374)(254,474)(255,475)(256,476)(257,477)(258,478)(259,479)(260,480)
(261,481)(262,482)(263,483)(264,484)(265,463)(266,464)(267,465)(268,466)
(269,467)(270,468)(271,469)(272,470)(273,471)(274,472)(275,473)(276,452)
(277,453)(278,454)(279,455)(280,456)(281,457)(282,458)(283,459)(284,460)
(285,461)(286,462)(287,441)(288,442)(289,443)(290,444)(291,445)(292,446)
(293,447)(294,448)(295,449)(296,450)(297,451)(298,430)(299,431)(300,432)
(301,433)(302,434)(303,435)(304,436)(305,437)(306,438)(307,439)(308,440)
(309,419)(310,420)(311,421)(312,422)(313,423)(314,424)(315,425)(316,426)
(317,427)(318,428)(319,429)(320,408)(321,409)(322,410)(323,411)(324,412)
(325,413)(326,414)(327,415)(328,416)(329,417)(330,418)(331,397)(332,398)
(333,399)(334,400)(335,401)(336,402)(337,403)(338,404)(339,405)(340,406)
(341,407)(342,386)(343,387)(344,388)(345,389)(346,390)(347,391)(348,392)
(349,393)(350,394)(351,395)(352,396)(353,375)(354,376)(355,377)(356,378)
(357,379)(358,380)(359,381)(360,382)(361,383)(362,384)(363,385);;
s2 := (  1, 12)(  2, 22)(  3, 21)(  4, 20)(  5, 19)(  6, 18)(  7, 17)(  8, 16)
(  9, 15)( 10, 14)( 11, 13)( 23,111)( 24,121)( 25,120)( 26,119)( 27,118)
( 28,117)( 29,116)( 30,115)( 31,114)( 32,113)( 33,112)( 34,100)( 35,110)
( 36,109)( 37,108)( 38,107)( 39,106)( 40,105)( 41,104)( 42,103)( 43,102)
( 44,101)( 45, 89)( 46, 99)( 47, 98)( 48, 97)( 49, 96)( 50, 95)( 51, 94)
( 52, 93)( 53, 92)( 54, 91)( 55, 90)( 56, 78)( 57, 88)( 58, 87)( 59, 86)
( 60, 85)( 61, 84)( 62, 83)( 63, 82)( 64, 81)( 65, 80)( 66, 79)( 68, 77)
( 69, 76)( 70, 75)( 71, 74)( 72, 73)(122,133)(123,143)(124,142)(125,141)
(126,140)(127,139)(128,138)(129,137)(130,136)(131,135)(132,134)(144,232)
(145,242)(146,241)(147,240)(148,239)(149,238)(150,237)(151,236)(152,235)
(153,234)(154,233)(155,221)(156,231)(157,230)(158,229)(159,228)(160,227)
(161,226)(162,225)(163,224)(164,223)(165,222)(166,210)(167,220)(168,219)
(169,218)(170,217)(171,216)(172,215)(173,214)(174,213)(175,212)(176,211)
(177,199)(178,209)(179,208)(180,207)(181,206)(182,205)(183,204)(184,203)
(185,202)(186,201)(187,200)(189,198)(190,197)(191,196)(192,195)(193,194)
(243,254)(244,264)(245,263)(246,262)(247,261)(248,260)(249,259)(250,258)
(251,257)(252,256)(253,255)(265,353)(266,363)(267,362)(268,361)(269,360)
(270,359)(271,358)(272,357)(273,356)(274,355)(275,354)(276,342)(277,352)
(278,351)(279,350)(280,349)(281,348)(282,347)(283,346)(284,345)(285,344)
(286,343)(287,331)(288,341)(289,340)(290,339)(291,338)(292,337)(293,336)
(294,335)(295,334)(296,333)(297,332)(298,320)(299,330)(300,329)(301,328)
(302,327)(303,326)(304,325)(305,324)(306,323)(307,322)(308,321)(310,319)
(311,318)(312,317)(313,316)(314,315)(364,375)(365,385)(366,384)(367,383)
(368,382)(369,381)(370,380)(371,379)(372,378)(373,377)(374,376)(386,474)
(387,484)(388,483)(389,482)(390,481)(391,480)(392,479)(393,478)(394,477)
(395,476)(396,475)(397,463)(398,473)(399,472)(400,471)(401,470)(402,469)
(403,468)(404,467)(405,466)(406,465)(407,464)(408,452)(409,462)(410,461)
(411,460)(412,459)(413,458)(414,457)(415,456)(416,455)(417,454)(418,453)
(419,441)(420,451)(421,450)(422,449)(423,448)(424,447)(425,446)(426,445)
(427,444)(428,443)(429,442)(431,440)(432,439)(433,438)(434,437)(435,436);;
s3 := (  1,  2)(  3, 11)(  4, 10)(  5,  9)(  6,  8)( 12,112)( 13,111)( 14,121)
( 15,120)( 16,119)( 17,118)( 18,117)( 19,116)( 20,115)( 21,114)( 22,113)
( 23,101)( 24,100)( 25,110)( 26,109)( 27,108)( 28,107)( 29,106)( 30,105)
( 31,104)( 32,103)( 33,102)( 34, 90)( 35, 89)( 36, 99)( 37, 98)( 38, 97)
( 39, 96)( 40, 95)( 41, 94)( 42, 93)( 43, 92)( 44, 91)( 45, 79)( 46, 78)
( 47, 88)( 48, 87)( 49, 86)( 50, 85)( 51, 84)( 52, 83)( 53, 82)( 54, 81)
( 55, 80)( 56, 68)( 57, 67)( 58, 77)( 59, 76)( 60, 75)( 61, 74)( 62, 73)
( 63, 72)( 64, 71)( 65, 70)( 66, 69)(122,123)(124,132)(125,131)(126,130)
(127,129)(133,233)(134,232)(135,242)(136,241)(137,240)(138,239)(139,238)
(140,237)(141,236)(142,235)(143,234)(144,222)(145,221)(146,231)(147,230)
(148,229)(149,228)(150,227)(151,226)(152,225)(153,224)(154,223)(155,211)
(156,210)(157,220)(158,219)(159,218)(160,217)(161,216)(162,215)(163,214)
(164,213)(165,212)(166,200)(167,199)(168,209)(169,208)(170,207)(171,206)
(172,205)(173,204)(174,203)(175,202)(176,201)(177,189)(178,188)(179,198)
(180,197)(181,196)(182,195)(183,194)(184,193)(185,192)(186,191)(187,190)
(243,244)(245,253)(246,252)(247,251)(248,250)(254,354)(255,353)(256,363)
(257,362)(258,361)(259,360)(260,359)(261,358)(262,357)(263,356)(264,355)
(265,343)(266,342)(267,352)(268,351)(269,350)(270,349)(271,348)(272,347)
(273,346)(274,345)(275,344)(276,332)(277,331)(278,341)(279,340)(280,339)
(281,338)(282,337)(283,336)(284,335)(285,334)(286,333)(287,321)(288,320)
(289,330)(290,329)(291,328)(292,327)(293,326)(294,325)(295,324)(296,323)
(297,322)(298,310)(299,309)(300,319)(301,318)(302,317)(303,316)(304,315)
(305,314)(306,313)(307,312)(308,311)(364,365)(366,374)(367,373)(368,372)
(369,371)(375,475)(376,474)(377,484)(378,483)(379,482)(380,481)(381,480)
(382,479)(383,478)(384,477)(385,476)(386,464)(387,463)(388,473)(389,472)
(390,471)(391,470)(392,469)(393,468)(394,467)(395,466)(396,465)(397,453)
(398,452)(399,462)(400,461)(401,460)(402,459)(403,458)(404,457)(405,456)
(406,455)(407,454)(408,442)(409,441)(410,451)(411,450)(412,449)(413,448)
(414,447)(415,446)(416,445)(417,444)(418,443)(419,431)(420,430)(421,440)
(422,439)(423,438)(424,437)(425,436)(426,435)(427,434)(428,433)(429,432);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(484)!(  1,243)(  2,244)(  3,245)(  4,246)(  5,247)(  6,248)(  7,249)
(  8,250)(  9,251)( 10,252)( 11,253)( 12,254)( 13,255)( 14,256)( 15,257)
( 16,258)( 17,259)( 18,260)( 19,261)( 20,262)( 21,263)( 22,264)( 23,265)
( 24,266)( 25,267)( 26,268)( 27,269)( 28,270)( 29,271)( 30,272)( 31,273)
( 32,274)( 33,275)( 34,276)( 35,277)( 36,278)( 37,279)( 38,280)( 39,281)
( 40,282)( 41,283)( 42,284)( 43,285)( 44,286)( 45,287)( 46,288)( 47,289)
( 48,290)( 49,291)( 50,292)( 51,293)( 52,294)( 53,295)( 54,296)( 55,297)
( 56,298)( 57,299)( 58,300)( 59,301)( 60,302)( 61,303)( 62,304)( 63,305)
( 64,306)( 65,307)( 66,308)( 67,309)( 68,310)( 69,311)( 70,312)( 71,313)
( 72,314)( 73,315)( 74,316)( 75,317)( 76,318)( 77,319)( 78,320)( 79,321)
( 80,322)( 81,323)( 82,324)( 83,325)( 84,326)( 85,327)( 86,328)( 87,329)
( 88,330)( 89,331)( 90,332)( 91,333)( 92,334)( 93,335)( 94,336)( 95,337)
( 96,338)( 97,339)( 98,340)( 99,341)(100,342)(101,343)(102,344)(103,345)
(104,346)(105,347)(106,348)(107,349)(108,350)(109,351)(110,352)(111,353)
(112,354)(113,355)(114,356)(115,357)(116,358)(117,359)(118,360)(119,361)
(120,362)(121,363)(122,364)(123,365)(124,366)(125,367)(126,368)(127,369)
(128,370)(129,371)(130,372)(131,373)(132,374)(133,375)(134,376)(135,377)
(136,378)(137,379)(138,380)(139,381)(140,382)(141,383)(142,384)(143,385)
(144,386)(145,387)(146,388)(147,389)(148,390)(149,391)(150,392)(151,393)
(152,394)(153,395)(154,396)(155,397)(156,398)(157,399)(158,400)(159,401)
(160,402)(161,403)(162,404)(163,405)(164,406)(165,407)(166,408)(167,409)
(168,410)(169,411)(170,412)(171,413)(172,414)(173,415)(174,416)(175,417)
(176,418)(177,419)(178,420)(179,421)(180,422)(181,423)(182,424)(183,425)
(184,426)(185,427)(186,428)(187,429)(188,430)(189,431)(190,432)(191,433)
(192,434)(193,435)(194,436)(195,437)(196,438)(197,439)(198,440)(199,441)
(200,442)(201,443)(202,444)(203,445)(204,446)(205,447)(206,448)(207,449)
(208,450)(209,451)(210,452)(211,453)(212,454)(213,455)(214,456)(215,457)
(216,458)(217,459)(218,460)(219,461)(220,462)(221,463)(222,464)(223,465)
(224,466)(225,467)(226,468)(227,469)(228,470)(229,471)(230,472)(231,473)
(232,474)(233,475)(234,476)(235,477)(236,478)(237,479)(238,480)(239,481)
(240,482)(241,483)(242,484);
s1 := Sym(484)!( 12,111)( 13,112)( 14,113)( 15,114)( 16,115)( 17,116)( 18,117)
( 19,118)( 20,119)( 21,120)( 22,121)( 23,100)( 24,101)( 25,102)( 26,103)
( 27,104)( 28,105)( 29,106)( 30,107)( 31,108)( 32,109)( 33,110)( 34, 89)
( 35, 90)( 36, 91)( 37, 92)( 38, 93)( 39, 94)( 40, 95)( 41, 96)( 42, 97)
( 43, 98)( 44, 99)( 45, 78)( 46, 79)( 47, 80)( 48, 81)( 49, 82)( 50, 83)
( 51, 84)( 52, 85)( 53, 86)( 54, 87)( 55, 88)( 56, 67)( 57, 68)( 58, 69)
( 59, 70)( 60, 71)( 61, 72)( 62, 73)( 63, 74)( 64, 75)( 65, 76)( 66, 77)
(133,232)(134,233)(135,234)(136,235)(137,236)(138,237)(139,238)(140,239)
(141,240)(142,241)(143,242)(144,221)(145,222)(146,223)(147,224)(148,225)
(149,226)(150,227)(151,228)(152,229)(153,230)(154,231)(155,210)(156,211)
(157,212)(158,213)(159,214)(160,215)(161,216)(162,217)(163,218)(164,219)
(165,220)(166,199)(167,200)(168,201)(169,202)(170,203)(171,204)(172,205)
(173,206)(174,207)(175,208)(176,209)(177,188)(178,189)(179,190)(180,191)
(181,192)(182,193)(183,194)(184,195)(185,196)(186,197)(187,198)(243,364)
(244,365)(245,366)(246,367)(247,368)(248,369)(249,370)(250,371)(251,372)
(252,373)(253,374)(254,474)(255,475)(256,476)(257,477)(258,478)(259,479)
(260,480)(261,481)(262,482)(263,483)(264,484)(265,463)(266,464)(267,465)
(268,466)(269,467)(270,468)(271,469)(272,470)(273,471)(274,472)(275,473)
(276,452)(277,453)(278,454)(279,455)(280,456)(281,457)(282,458)(283,459)
(284,460)(285,461)(286,462)(287,441)(288,442)(289,443)(290,444)(291,445)
(292,446)(293,447)(294,448)(295,449)(296,450)(297,451)(298,430)(299,431)
(300,432)(301,433)(302,434)(303,435)(304,436)(305,437)(306,438)(307,439)
(308,440)(309,419)(310,420)(311,421)(312,422)(313,423)(314,424)(315,425)
(316,426)(317,427)(318,428)(319,429)(320,408)(321,409)(322,410)(323,411)
(324,412)(325,413)(326,414)(327,415)(328,416)(329,417)(330,418)(331,397)
(332,398)(333,399)(334,400)(335,401)(336,402)(337,403)(338,404)(339,405)
(340,406)(341,407)(342,386)(343,387)(344,388)(345,389)(346,390)(347,391)
(348,392)(349,393)(350,394)(351,395)(352,396)(353,375)(354,376)(355,377)
(356,378)(357,379)(358,380)(359,381)(360,382)(361,383)(362,384)(363,385);
s2 := Sym(484)!(  1, 12)(  2, 22)(  3, 21)(  4, 20)(  5, 19)(  6, 18)(  7, 17)
(  8, 16)(  9, 15)( 10, 14)( 11, 13)( 23,111)( 24,121)( 25,120)( 26,119)
( 27,118)( 28,117)( 29,116)( 30,115)( 31,114)( 32,113)( 33,112)( 34,100)
( 35,110)( 36,109)( 37,108)( 38,107)( 39,106)( 40,105)( 41,104)( 42,103)
( 43,102)( 44,101)( 45, 89)( 46, 99)( 47, 98)( 48, 97)( 49, 96)( 50, 95)
( 51, 94)( 52, 93)( 53, 92)( 54, 91)( 55, 90)( 56, 78)( 57, 88)( 58, 87)
( 59, 86)( 60, 85)( 61, 84)( 62, 83)( 63, 82)( 64, 81)( 65, 80)( 66, 79)
( 68, 77)( 69, 76)( 70, 75)( 71, 74)( 72, 73)(122,133)(123,143)(124,142)
(125,141)(126,140)(127,139)(128,138)(129,137)(130,136)(131,135)(132,134)
(144,232)(145,242)(146,241)(147,240)(148,239)(149,238)(150,237)(151,236)
(152,235)(153,234)(154,233)(155,221)(156,231)(157,230)(158,229)(159,228)
(160,227)(161,226)(162,225)(163,224)(164,223)(165,222)(166,210)(167,220)
(168,219)(169,218)(170,217)(171,216)(172,215)(173,214)(174,213)(175,212)
(176,211)(177,199)(178,209)(179,208)(180,207)(181,206)(182,205)(183,204)
(184,203)(185,202)(186,201)(187,200)(189,198)(190,197)(191,196)(192,195)
(193,194)(243,254)(244,264)(245,263)(246,262)(247,261)(248,260)(249,259)
(250,258)(251,257)(252,256)(253,255)(265,353)(266,363)(267,362)(268,361)
(269,360)(270,359)(271,358)(272,357)(273,356)(274,355)(275,354)(276,342)
(277,352)(278,351)(279,350)(280,349)(281,348)(282,347)(283,346)(284,345)
(285,344)(286,343)(287,331)(288,341)(289,340)(290,339)(291,338)(292,337)
(293,336)(294,335)(295,334)(296,333)(297,332)(298,320)(299,330)(300,329)
(301,328)(302,327)(303,326)(304,325)(305,324)(306,323)(307,322)(308,321)
(310,319)(311,318)(312,317)(313,316)(314,315)(364,375)(365,385)(366,384)
(367,383)(368,382)(369,381)(370,380)(371,379)(372,378)(373,377)(374,376)
(386,474)(387,484)(388,483)(389,482)(390,481)(391,480)(392,479)(393,478)
(394,477)(395,476)(396,475)(397,463)(398,473)(399,472)(400,471)(401,470)
(402,469)(403,468)(404,467)(405,466)(406,465)(407,464)(408,452)(409,462)
(410,461)(411,460)(412,459)(413,458)(414,457)(415,456)(416,455)(417,454)
(418,453)(419,441)(420,451)(421,450)(422,449)(423,448)(424,447)(425,446)
(426,445)(427,444)(428,443)(429,442)(431,440)(432,439)(433,438)(434,437)
(435,436);
s3 := Sym(484)!(  1,  2)(  3, 11)(  4, 10)(  5,  9)(  6,  8)( 12,112)( 13,111)
( 14,121)( 15,120)( 16,119)( 17,118)( 18,117)( 19,116)( 20,115)( 21,114)
( 22,113)( 23,101)( 24,100)( 25,110)( 26,109)( 27,108)( 28,107)( 29,106)
( 30,105)( 31,104)( 32,103)( 33,102)( 34, 90)( 35, 89)( 36, 99)( 37, 98)
( 38, 97)( 39, 96)( 40, 95)( 41, 94)( 42, 93)( 43, 92)( 44, 91)( 45, 79)
( 46, 78)( 47, 88)( 48, 87)( 49, 86)( 50, 85)( 51, 84)( 52, 83)( 53, 82)
( 54, 81)( 55, 80)( 56, 68)( 57, 67)( 58, 77)( 59, 76)( 60, 75)( 61, 74)
( 62, 73)( 63, 72)( 64, 71)( 65, 70)( 66, 69)(122,123)(124,132)(125,131)
(126,130)(127,129)(133,233)(134,232)(135,242)(136,241)(137,240)(138,239)
(139,238)(140,237)(141,236)(142,235)(143,234)(144,222)(145,221)(146,231)
(147,230)(148,229)(149,228)(150,227)(151,226)(152,225)(153,224)(154,223)
(155,211)(156,210)(157,220)(158,219)(159,218)(160,217)(161,216)(162,215)
(163,214)(164,213)(165,212)(166,200)(167,199)(168,209)(169,208)(170,207)
(171,206)(172,205)(173,204)(174,203)(175,202)(176,201)(177,189)(178,188)
(179,198)(180,197)(181,196)(182,195)(183,194)(184,193)(185,192)(186,191)
(187,190)(243,244)(245,253)(246,252)(247,251)(248,250)(254,354)(255,353)
(256,363)(257,362)(258,361)(259,360)(260,359)(261,358)(262,357)(263,356)
(264,355)(265,343)(266,342)(267,352)(268,351)(269,350)(270,349)(271,348)
(272,347)(273,346)(274,345)(275,344)(276,332)(277,331)(278,341)(279,340)
(280,339)(281,338)(282,337)(283,336)(284,335)(285,334)(286,333)(287,321)
(288,320)(289,330)(290,329)(291,328)(292,327)(293,326)(294,325)(295,324)
(296,323)(297,322)(298,310)(299,309)(300,319)(301,318)(302,317)(303,316)
(304,315)(305,314)(306,313)(307,312)(308,311)(364,365)(366,374)(367,373)
(368,372)(369,371)(375,475)(376,474)(377,484)(378,483)(379,482)(380,481)
(381,480)(382,479)(383,478)(384,477)(385,476)(386,464)(387,463)(388,473)
(389,472)(390,471)(391,470)(392,469)(393,468)(394,467)(395,466)(396,465)
(397,453)(398,452)(399,462)(400,461)(401,460)(402,459)(403,458)(404,457)
(405,456)(406,455)(407,454)(408,442)(409,441)(410,451)(411,450)(412,449)
(413,448)(414,447)(415,446)(416,445)(417,444)(418,443)(419,431)(420,430)
(421,440)(422,439)(423,438)(424,437)(425,436)(426,435)(427,434)(428,433)
(429,432);
poly := sub<Sym(484)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope