Polytope of Type {11,22,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {11,22,4}*1936
if this polytope has a name.
Group : SmallGroup(1936,134)
Rank : 4
Schlafli Type : {11,22,4}
Number of vertices, edges, etc : 11, 121, 44, 4
Order of s0s1s2s3 : 44
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {11,22,2}*968
   11-fold quotients : {11,2,4}*176
   22-fold quotients : {11,2,2}*88
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 12,111)( 13,121)( 14,120)
( 15,119)( 16,118)( 17,117)( 18,116)( 19,115)( 20,114)( 21,113)( 22,112)
( 23,100)( 24,110)( 25,109)( 26,108)( 27,107)( 28,106)( 29,105)( 30,104)
( 31,103)( 32,102)( 33,101)( 34, 89)( 35, 99)( 36, 98)( 37, 97)( 38, 96)
( 39, 95)( 40, 94)( 41, 93)( 42, 92)( 43, 91)( 44, 90)( 45, 78)( 46, 88)
( 47, 87)( 48, 86)( 49, 85)( 50, 84)( 51, 83)( 52, 82)( 53, 81)( 54, 80)
( 55, 79)( 56, 67)( 57, 77)( 58, 76)( 59, 75)( 60, 74)( 61, 73)( 62, 72)
( 63, 71)( 64, 70)( 65, 69)( 66, 68)(123,132)(124,131)(125,130)(126,129)
(127,128)(133,232)(134,242)(135,241)(136,240)(137,239)(138,238)(139,237)
(140,236)(141,235)(142,234)(143,233)(144,221)(145,231)(146,230)(147,229)
(148,228)(149,227)(150,226)(151,225)(152,224)(153,223)(154,222)(155,210)
(156,220)(157,219)(158,218)(159,217)(160,216)(161,215)(162,214)(163,213)
(164,212)(165,211)(166,199)(167,209)(168,208)(169,207)(170,206)(171,205)
(172,204)(173,203)(174,202)(175,201)(176,200)(177,188)(178,198)(179,197)
(180,196)(181,195)(182,194)(183,193)(184,192)(185,191)(186,190)(187,189)
(244,253)(245,252)(246,251)(247,250)(248,249)(254,353)(255,363)(256,362)
(257,361)(258,360)(259,359)(260,358)(261,357)(262,356)(263,355)(264,354)
(265,342)(266,352)(267,351)(268,350)(269,349)(270,348)(271,347)(272,346)
(273,345)(274,344)(275,343)(276,331)(277,341)(278,340)(279,339)(280,338)
(281,337)(282,336)(283,335)(284,334)(285,333)(286,332)(287,320)(288,330)
(289,329)(290,328)(291,327)(292,326)(293,325)(294,324)(295,323)(296,322)
(297,321)(298,309)(299,319)(300,318)(301,317)(302,316)(303,315)(304,314)
(305,313)(306,312)(307,311)(308,310)(365,374)(366,373)(367,372)(368,371)
(369,370)(375,474)(376,484)(377,483)(378,482)(379,481)(380,480)(381,479)
(382,478)(383,477)(384,476)(385,475)(386,463)(387,473)(388,472)(389,471)
(390,470)(391,469)(392,468)(393,467)(394,466)(395,465)(396,464)(397,452)
(398,462)(399,461)(400,460)(401,459)(402,458)(403,457)(404,456)(405,455)
(406,454)(407,453)(408,441)(409,451)(410,450)(411,449)(412,448)(413,447)
(414,446)(415,445)(416,444)(417,443)(418,442)(419,430)(420,440)(421,439)
(422,438)(423,437)(424,436)(425,435)(426,434)(427,433)(428,432)(429,431);;
s1 := (  1, 13)(  2, 12)(  3, 22)(  4, 21)(  5, 20)(  6, 19)(  7, 18)(  8, 17)
(  9, 16)( 10, 15)( 11, 14)( 23,112)( 24,111)( 25,121)( 26,120)( 27,119)
( 28,118)( 29,117)( 30,116)( 31,115)( 32,114)( 33,113)( 34,101)( 35,100)
( 36,110)( 37,109)( 38,108)( 39,107)( 40,106)( 41,105)( 42,104)( 43,103)
( 44,102)( 45, 90)( 46, 89)( 47, 99)( 48, 98)( 49, 97)( 50, 96)( 51, 95)
( 52, 94)( 53, 93)( 54, 92)( 55, 91)( 56, 79)( 57, 78)( 58, 88)( 59, 87)
( 60, 86)( 61, 85)( 62, 84)( 63, 83)( 64, 82)( 65, 81)( 66, 80)( 67, 68)
( 69, 77)( 70, 76)( 71, 75)( 72, 74)(122,134)(123,133)(124,143)(125,142)
(126,141)(127,140)(128,139)(129,138)(130,137)(131,136)(132,135)(144,233)
(145,232)(146,242)(147,241)(148,240)(149,239)(150,238)(151,237)(152,236)
(153,235)(154,234)(155,222)(156,221)(157,231)(158,230)(159,229)(160,228)
(161,227)(162,226)(163,225)(164,224)(165,223)(166,211)(167,210)(168,220)
(169,219)(170,218)(171,217)(172,216)(173,215)(174,214)(175,213)(176,212)
(177,200)(178,199)(179,209)(180,208)(181,207)(182,206)(183,205)(184,204)
(185,203)(186,202)(187,201)(188,189)(190,198)(191,197)(192,196)(193,195)
(243,255)(244,254)(245,264)(246,263)(247,262)(248,261)(249,260)(250,259)
(251,258)(252,257)(253,256)(265,354)(266,353)(267,363)(268,362)(269,361)
(270,360)(271,359)(272,358)(273,357)(274,356)(275,355)(276,343)(277,342)
(278,352)(279,351)(280,350)(281,349)(282,348)(283,347)(284,346)(285,345)
(286,344)(287,332)(288,331)(289,341)(290,340)(291,339)(292,338)(293,337)
(294,336)(295,335)(296,334)(297,333)(298,321)(299,320)(300,330)(301,329)
(302,328)(303,327)(304,326)(305,325)(306,324)(307,323)(308,322)(309,310)
(311,319)(312,318)(313,317)(314,316)(364,376)(365,375)(366,385)(367,384)
(368,383)(369,382)(370,381)(371,380)(372,379)(373,378)(374,377)(386,475)
(387,474)(388,484)(389,483)(390,482)(391,481)(392,480)(393,479)(394,478)
(395,477)(396,476)(397,464)(398,463)(399,473)(400,472)(401,471)(402,470)
(403,469)(404,468)(405,467)(406,466)(407,465)(408,453)(409,452)(410,462)
(411,461)(412,460)(413,459)(414,458)(415,457)(416,456)(417,455)(418,454)
(419,442)(420,441)(421,451)(422,450)(423,449)(424,448)(425,447)(426,446)
(427,445)(428,444)(429,443)(430,431)(432,440)(433,439)(434,438)(435,437);;
s2 := ( 12,111)( 13,112)( 14,113)( 15,114)( 16,115)( 17,116)( 18,117)( 19,118)
( 20,119)( 21,120)( 22,121)( 23,100)( 24,101)( 25,102)( 26,103)( 27,104)
( 28,105)( 29,106)( 30,107)( 31,108)( 32,109)( 33,110)( 34, 89)( 35, 90)
( 36, 91)( 37, 92)( 38, 93)( 39, 94)( 40, 95)( 41, 96)( 42, 97)( 43, 98)
( 44, 99)( 45, 78)( 46, 79)( 47, 80)( 48, 81)( 49, 82)( 50, 83)( 51, 84)
( 52, 85)( 53, 86)( 54, 87)( 55, 88)( 56, 67)( 57, 68)( 58, 69)( 59, 70)
( 60, 71)( 61, 72)( 62, 73)( 63, 74)( 64, 75)( 65, 76)( 66, 77)(133,232)
(134,233)(135,234)(136,235)(137,236)(138,237)(139,238)(140,239)(141,240)
(142,241)(143,242)(144,221)(145,222)(146,223)(147,224)(148,225)(149,226)
(150,227)(151,228)(152,229)(153,230)(154,231)(155,210)(156,211)(157,212)
(158,213)(159,214)(160,215)(161,216)(162,217)(163,218)(164,219)(165,220)
(166,199)(167,200)(168,201)(169,202)(170,203)(171,204)(172,205)(173,206)
(174,207)(175,208)(176,209)(177,188)(178,189)(179,190)(180,191)(181,192)
(182,193)(183,194)(184,195)(185,196)(186,197)(187,198)(243,364)(244,365)
(245,366)(246,367)(247,368)(248,369)(249,370)(250,371)(251,372)(252,373)
(253,374)(254,474)(255,475)(256,476)(257,477)(258,478)(259,479)(260,480)
(261,481)(262,482)(263,483)(264,484)(265,463)(266,464)(267,465)(268,466)
(269,467)(270,468)(271,469)(272,470)(273,471)(274,472)(275,473)(276,452)
(277,453)(278,454)(279,455)(280,456)(281,457)(282,458)(283,459)(284,460)
(285,461)(286,462)(287,441)(288,442)(289,443)(290,444)(291,445)(292,446)
(293,447)(294,448)(295,449)(296,450)(297,451)(298,430)(299,431)(300,432)
(301,433)(302,434)(303,435)(304,436)(305,437)(306,438)(307,439)(308,440)
(309,419)(310,420)(311,421)(312,422)(313,423)(314,424)(315,425)(316,426)
(317,427)(318,428)(319,429)(320,408)(321,409)(322,410)(323,411)(324,412)
(325,413)(326,414)(327,415)(328,416)(329,417)(330,418)(331,397)(332,398)
(333,399)(334,400)(335,401)(336,402)(337,403)(338,404)(339,405)(340,406)
(341,407)(342,386)(343,387)(344,388)(345,389)(346,390)(347,391)(348,392)
(349,393)(350,394)(351,395)(352,396)(353,375)(354,376)(355,377)(356,378)
(357,379)(358,380)(359,381)(360,382)(361,383)(362,384)(363,385);;
s3 := (  1,243)(  2,244)(  3,245)(  4,246)(  5,247)(  6,248)(  7,249)(  8,250)
(  9,251)( 10,252)( 11,253)( 12,254)( 13,255)( 14,256)( 15,257)( 16,258)
( 17,259)( 18,260)( 19,261)( 20,262)( 21,263)( 22,264)( 23,265)( 24,266)
( 25,267)( 26,268)( 27,269)( 28,270)( 29,271)( 30,272)( 31,273)( 32,274)
( 33,275)( 34,276)( 35,277)( 36,278)( 37,279)( 38,280)( 39,281)( 40,282)
( 41,283)( 42,284)( 43,285)( 44,286)( 45,287)( 46,288)( 47,289)( 48,290)
( 49,291)( 50,292)( 51,293)( 52,294)( 53,295)( 54,296)( 55,297)( 56,298)
( 57,299)( 58,300)( 59,301)( 60,302)( 61,303)( 62,304)( 63,305)( 64,306)
( 65,307)( 66,308)( 67,309)( 68,310)( 69,311)( 70,312)( 71,313)( 72,314)
( 73,315)( 74,316)( 75,317)( 76,318)( 77,319)( 78,320)( 79,321)( 80,322)
( 81,323)( 82,324)( 83,325)( 84,326)( 85,327)( 86,328)( 87,329)( 88,330)
( 89,331)( 90,332)( 91,333)( 92,334)( 93,335)( 94,336)( 95,337)( 96,338)
( 97,339)( 98,340)( 99,341)(100,342)(101,343)(102,344)(103,345)(104,346)
(105,347)(106,348)(107,349)(108,350)(109,351)(110,352)(111,353)(112,354)
(113,355)(114,356)(115,357)(116,358)(117,359)(118,360)(119,361)(120,362)
(121,363)(122,364)(123,365)(124,366)(125,367)(126,368)(127,369)(128,370)
(129,371)(130,372)(131,373)(132,374)(133,375)(134,376)(135,377)(136,378)
(137,379)(138,380)(139,381)(140,382)(141,383)(142,384)(143,385)(144,386)
(145,387)(146,388)(147,389)(148,390)(149,391)(150,392)(151,393)(152,394)
(153,395)(154,396)(155,397)(156,398)(157,399)(158,400)(159,401)(160,402)
(161,403)(162,404)(163,405)(164,406)(165,407)(166,408)(167,409)(168,410)
(169,411)(170,412)(171,413)(172,414)(173,415)(174,416)(175,417)(176,418)
(177,419)(178,420)(179,421)(180,422)(181,423)(182,424)(183,425)(184,426)
(185,427)(186,428)(187,429)(188,430)(189,431)(190,432)(191,433)(192,434)
(193,435)(194,436)(195,437)(196,438)(197,439)(198,440)(199,441)(200,442)
(201,443)(202,444)(203,445)(204,446)(205,447)(206,448)(207,449)(208,450)
(209,451)(210,452)(211,453)(212,454)(213,455)(214,456)(215,457)(216,458)
(217,459)(218,460)(219,461)(220,462)(221,463)(222,464)(223,465)(224,466)
(225,467)(226,468)(227,469)(228,470)(229,471)(230,472)(231,473)(232,474)
(233,475)(234,476)(235,477)(236,478)(237,479)(238,480)(239,481)(240,482)
(241,483)(242,484);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(484)!(  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 12,111)( 13,121)
( 14,120)( 15,119)( 16,118)( 17,117)( 18,116)( 19,115)( 20,114)( 21,113)
( 22,112)( 23,100)( 24,110)( 25,109)( 26,108)( 27,107)( 28,106)( 29,105)
( 30,104)( 31,103)( 32,102)( 33,101)( 34, 89)( 35, 99)( 36, 98)( 37, 97)
( 38, 96)( 39, 95)( 40, 94)( 41, 93)( 42, 92)( 43, 91)( 44, 90)( 45, 78)
( 46, 88)( 47, 87)( 48, 86)( 49, 85)( 50, 84)( 51, 83)( 52, 82)( 53, 81)
( 54, 80)( 55, 79)( 56, 67)( 57, 77)( 58, 76)( 59, 75)( 60, 74)( 61, 73)
( 62, 72)( 63, 71)( 64, 70)( 65, 69)( 66, 68)(123,132)(124,131)(125,130)
(126,129)(127,128)(133,232)(134,242)(135,241)(136,240)(137,239)(138,238)
(139,237)(140,236)(141,235)(142,234)(143,233)(144,221)(145,231)(146,230)
(147,229)(148,228)(149,227)(150,226)(151,225)(152,224)(153,223)(154,222)
(155,210)(156,220)(157,219)(158,218)(159,217)(160,216)(161,215)(162,214)
(163,213)(164,212)(165,211)(166,199)(167,209)(168,208)(169,207)(170,206)
(171,205)(172,204)(173,203)(174,202)(175,201)(176,200)(177,188)(178,198)
(179,197)(180,196)(181,195)(182,194)(183,193)(184,192)(185,191)(186,190)
(187,189)(244,253)(245,252)(246,251)(247,250)(248,249)(254,353)(255,363)
(256,362)(257,361)(258,360)(259,359)(260,358)(261,357)(262,356)(263,355)
(264,354)(265,342)(266,352)(267,351)(268,350)(269,349)(270,348)(271,347)
(272,346)(273,345)(274,344)(275,343)(276,331)(277,341)(278,340)(279,339)
(280,338)(281,337)(282,336)(283,335)(284,334)(285,333)(286,332)(287,320)
(288,330)(289,329)(290,328)(291,327)(292,326)(293,325)(294,324)(295,323)
(296,322)(297,321)(298,309)(299,319)(300,318)(301,317)(302,316)(303,315)
(304,314)(305,313)(306,312)(307,311)(308,310)(365,374)(366,373)(367,372)
(368,371)(369,370)(375,474)(376,484)(377,483)(378,482)(379,481)(380,480)
(381,479)(382,478)(383,477)(384,476)(385,475)(386,463)(387,473)(388,472)
(389,471)(390,470)(391,469)(392,468)(393,467)(394,466)(395,465)(396,464)
(397,452)(398,462)(399,461)(400,460)(401,459)(402,458)(403,457)(404,456)
(405,455)(406,454)(407,453)(408,441)(409,451)(410,450)(411,449)(412,448)
(413,447)(414,446)(415,445)(416,444)(417,443)(418,442)(419,430)(420,440)
(421,439)(422,438)(423,437)(424,436)(425,435)(426,434)(427,433)(428,432)
(429,431);
s1 := Sym(484)!(  1, 13)(  2, 12)(  3, 22)(  4, 21)(  5, 20)(  6, 19)(  7, 18)
(  8, 17)(  9, 16)( 10, 15)( 11, 14)( 23,112)( 24,111)( 25,121)( 26,120)
( 27,119)( 28,118)( 29,117)( 30,116)( 31,115)( 32,114)( 33,113)( 34,101)
( 35,100)( 36,110)( 37,109)( 38,108)( 39,107)( 40,106)( 41,105)( 42,104)
( 43,103)( 44,102)( 45, 90)( 46, 89)( 47, 99)( 48, 98)( 49, 97)( 50, 96)
( 51, 95)( 52, 94)( 53, 93)( 54, 92)( 55, 91)( 56, 79)( 57, 78)( 58, 88)
( 59, 87)( 60, 86)( 61, 85)( 62, 84)( 63, 83)( 64, 82)( 65, 81)( 66, 80)
( 67, 68)( 69, 77)( 70, 76)( 71, 75)( 72, 74)(122,134)(123,133)(124,143)
(125,142)(126,141)(127,140)(128,139)(129,138)(130,137)(131,136)(132,135)
(144,233)(145,232)(146,242)(147,241)(148,240)(149,239)(150,238)(151,237)
(152,236)(153,235)(154,234)(155,222)(156,221)(157,231)(158,230)(159,229)
(160,228)(161,227)(162,226)(163,225)(164,224)(165,223)(166,211)(167,210)
(168,220)(169,219)(170,218)(171,217)(172,216)(173,215)(174,214)(175,213)
(176,212)(177,200)(178,199)(179,209)(180,208)(181,207)(182,206)(183,205)
(184,204)(185,203)(186,202)(187,201)(188,189)(190,198)(191,197)(192,196)
(193,195)(243,255)(244,254)(245,264)(246,263)(247,262)(248,261)(249,260)
(250,259)(251,258)(252,257)(253,256)(265,354)(266,353)(267,363)(268,362)
(269,361)(270,360)(271,359)(272,358)(273,357)(274,356)(275,355)(276,343)
(277,342)(278,352)(279,351)(280,350)(281,349)(282,348)(283,347)(284,346)
(285,345)(286,344)(287,332)(288,331)(289,341)(290,340)(291,339)(292,338)
(293,337)(294,336)(295,335)(296,334)(297,333)(298,321)(299,320)(300,330)
(301,329)(302,328)(303,327)(304,326)(305,325)(306,324)(307,323)(308,322)
(309,310)(311,319)(312,318)(313,317)(314,316)(364,376)(365,375)(366,385)
(367,384)(368,383)(369,382)(370,381)(371,380)(372,379)(373,378)(374,377)
(386,475)(387,474)(388,484)(389,483)(390,482)(391,481)(392,480)(393,479)
(394,478)(395,477)(396,476)(397,464)(398,463)(399,473)(400,472)(401,471)
(402,470)(403,469)(404,468)(405,467)(406,466)(407,465)(408,453)(409,452)
(410,462)(411,461)(412,460)(413,459)(414,458)(415,457)(416,456)(417,455)
(418,454)(419,442)(420,441)(421,451)(422,450)(423,449)(424,448)(425,447)
(426,446)(427,445)(428,444)(429,443)(430,431)(432,440)(433,439)(434,438)
(435,437);
s2 := Sym(484)!( 12,111)( 13,112)( 14,113)( 15,114)( 16,115)( 17,116)( 18,117)
( 19,118)( 20,119)( 21,120)( 22,121)( 23,100)( 24,101)( 25,102)( 26,103)
( 27,104)( 28,105)( 29,106)( 30,107)( 31,108)( 32,109)( 33,110)( 34, 89)
( 35, 90)( 36, 91)( 37, 92)( 38, 93)( 39, 94)( 40, 95)( 41, 96)( 42, 97)
( 43, 98)( 44, 99)( 45, 78)( 46, 79)( 47, 80)( 48, 81)( 49, 82)( 50, 83)
( 51, 84)( 52, 85)( 53, 86)( 54, 87)( 55, 88)( 56, 67)( 57, 68)( 58, 69)
( 59, 70)( 60, 71)( 61, 72)( 62, 73)( 63, 74)( 64, 75)( 65, 76)( 66, 77)
(133,232)(134,233)(135,234)(136,235)(137,236)(138,237)(139,238)(140,239)
(141,240)(142,241)(143,242)(144,221)(145,222)(146,223)(147,224)(148,225)
(149,226)(150,227)(151,228)(152,229)(153,230)(154,231)(155,210)(156,211)
(157,212)(158,213)(159,214)(160,215)(161,216)(162,217)(163,218)(164,219)
(165,220)(166,199)(167,200)(168,201)(169,202)(170,203)(171,204)(172,205)
(173,206)(174,207)(175,208)(176,209)(177,188)(178,189)(179,190)(180,191)
(181,192)(182,193)(183,194)(184,195)(185,196)(186,197)(187,198)(243,364)
(244,365)(245,366)(246,367)(247,368)(248,369)(249,370)(250,371)(251,372)
(252,373)(253,374)(254,474)(255,475)(256,476)(257,477)(258,478)(259,479)
(260,480)(261,481)(262,482)(263,483)(264,484)(265,463)(266,464)(267,465)
(268,466)(269,467)(270,468)(271,469)(272,470)(273,471)(274,472)(275,473)
(276,452)(277,453)(278,454)(279,455)(280,456)(281,457)(282,458)(283,459)
(284,460)(285,461)(286,462)(287,441)(288,442)(289,443)(290,444)(291,445)
(292,446)(293,447)(294,448)(295,449)(296,450)(297,451)(298,430)(299,431)
(300,432)(301,433)(302,434)(303,435)(304,436)(305,437)(306,438)(307,439)
(308,440)(309,419)(310,420)(311,421)(312,422)(313,423)(314,424)(315,425)
(316,426)(317,427)(318,428)(319,429)(320,408)(321,409)(322,410)(323,411)
(324,412)(325,413)(326,414)(327,415)(328,416)(329,417)(330,418)(331,397)
(332,398)(333,399)(334,400)(335,401)(336,402)(337,403)(338,404)(339,405)
(340,406)(341,407)(342,386)(343,387)(344,388)(345,389)(346,390)(347,391)
(348,392)(349,393)(350,394)(351,395)(352,396)(353,375)(354,376)(355,377)
(356,378)(357,379)(358,380)(359,381)(360,382)(361,383)(362,384)(363,385);
s3 := Sym(484)!(  1,243)(  2,244)(  3,245)(  4,246)(  5,247)(  6,248)(  7,249)
(  8,250)(  9,251)( 10,252)( 11,253)( 12,254)( 13,255)( 14,256)( 15,257)
( 16,258)( 17,259)( 18,260)( 19,261)( 20,262)( 21,263)( 22,264)( 23,265)
( 24,266)( 25,267)( 26,268)( 27,269)( 28,270)( 29,271)( 30,272)( 31,273)
( 32,274)( 33,275)( 34,276)( 35,277)( 36,278)( 37,279)( 38,280)( 39,281)
( 40,282)( 41,283)( 42,284)( 43,285)( 44,286)( 45,287)( 46,288)( 47,289)
( 48,290)( 49,291)( 50,292)( 51,293)( 52,294)( 53,295)( 54,296)( 55,297)
( 56,298)( 57,299)( 58,300)( 59,301)( 60,302)( 61,303)( 62,304)( 63,305)
( 64,306)( 65,307)( 66,308)( 67,309)( 68,310)( 69,311)( 70,312)( 71,313)
( 72,314)( 73,315)( 74,316)( 75,317)( 76,318)( 77,319)( 78,320)( 79,321)
( 80,322)( 81,323)( 82,324)( 83,325)( 84,326)( 85,327)( 86,328)( 87,329)
( 88,330)( 89,331)( 90,332)( 91,333)( 92,334)( 93,335)( 94,336)( 95,337)
( 96,338)( 97,339)( 98,340)( 99,341)(100,342)(101,343)(102,344)(103,345)
(104,346)(105,347)(106,348)(107,349)(108,350)(109,351)(110,352)(111,353)
(112,354)(113,355)(114,356)(115,357)(116,358)(117,359)(118,360)(119,361)
(120,362)(121,363)(122,364)(123,365)(124,366)(125,367)(126,368)(127,369)
(128,370)(129,371)(130,372)(131,373)(132,374)(133,375)(134,376)(135,377)
(136,378)(137,379)(138,380)(139,381)(140,382)(141,383)(142,384)(143,385)
(144,386)(145,387)(146,388)(147,389)(148,390)(149,391)(150,392)(151,393)
(152,394)(153,395)(154,396)(155,397)(156,398)(157,399)(158,400)(159,401)
(160,402)(161,403)(162,404)(163,405)(164,406)(165,407)(166,408)(167,409)
(168,410)(169,411)(170,412)(171,413)(172,414)(173,415)(174,416)(175,417)
(176,418)(177,419)(178,420)(179,421)(180,422)(181,423)(182,424)(183,425)
(184,426)(185,427)(186,428)(187,429)(188,430)(189,431)(190,432)(191,433)
(192,434)(193,435)(194,436)(195,437)(196,438)(197,439)(198,440)(199,441)
(200,442)(201,443)(202,444)(203,445)(204,446)(205,447)(206,448)(207,449)
(208,450)(209,451)(210,452)(211,453)(212,454)(213,455)(214,456)(215,457)
(216,458)(217,459)(218,460)(219,461)(220,462)(221,463)(222,464)(223,465)
(224,466)(225,467)(226,468)(227,469)(228,470)(229,471)(230,472)(231,473)
(232,474)(233,475)(234,476)(235,477)(236,478)(237,479)(238,480)(239,481)
(240,482)(241,483)(242,484);
poly := sub<Sym(484)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope