include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {18,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,6,6}*1944a
if this polytope has a name.
Group : SmallGroup(1944,2340)
Rank : 4
Schlafli Type : {18,6,6}
Number of vertices, edges, etc : 27, 81, 27, 6
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {18,6,2}*648a, {6,6,6}*648b
9-fold quotients : {6,6,2}*216
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,22)(11,24)(12,23)(13,19)(14,21)(15,20)
(16,25)(17,27)(18,26)(29,30)(31,34)(32,36)(33,35)(37,49)(38,51)(39,50)(40,46)
(41,48)(42,47)(43,52)(44,54)(45,53)(56,57)(58,61)(59,63)(60,62)(64,76)(65,78)
(66,77)(67,73)(68,75)(69,74)(70,79)(71,81)(72,80);;
s1 := ( 1,10)( 2,11)( 3,12)( 4,16)( 5,17)( 6,18)( 7,13)( 8,14)( 9,15)(19,22)
(20,23)(21,24)(28,64)(29,65)(30,66)(31,70)(32,71)(33,72)(34,67)(35,68)(36,69)
(37,55)(38,56)(39,57)(40,61)(41,62)(42,63)(43,58)(44,59)(45,60)(46,76)(47,77)
(48,78)(49,73)(50,74)(51,75)(52,79)(53,80)(54,81);;
s2 := ( 1,28)( 2,30)( 3,29)( 4,31)( 5,33)( 6,32)( 7,34)( 8,36)( 9,35)(10,38)
(11,37)(12,39)(13,41)(14,40)(15,42)(16,44)(17,43)(18,45)(19,48)(20,47)(21,46)
(22,51)(23,50)(24,49)(25,54)(26,53)(27,52)(56,57)(59,60)(62,63)(64,65)(67,68)
(70,71)(73,75)(76,78)(79,81);;
s3 := (28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)
(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)
(49,76)(50,77)(51,78)(52,79)(53,80)(54,81);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,22)(11,24)(12,23)(13,19)(14,21)
(15,20)(16,25)(17,27)(18,26)(29,30)(31,34)(32,36)(33,35)(37,49)(38,51)(39,50)
(40,46)(41,48)(42,47)(43,52)(44,54)(45,53)(56,57)(58,61)(59,63)(60,62)(64,76)
(65,78)(66,77)(67,73)(68,75)(69,74)(70,79)(71,81)(72,80);
s1 := Sym(81)!( 1,10)( 2,11)( 3,12)( 4,16)( 5,17)( 6,18)( 7,13)( 8,14)( 9,15)
(19,22)(20,23)(21,24)(28,64)(29,65)(30,66)(31,70)(32,71)(33,72)(34,67)(35,68)
(36,69)(37,55)(38,56)(39,57)(40,61)(41,62)(42,63)(43,58)(44,59)(45,60)(46,76)
(47,77)(48,78)(49,73)(50,74)(51,75)(52,79)(53,80)(54,81);
s2 := Sym(81)!( 1,28)( 2,30)( 3,29)( 4,31)( 5,33)( 6,32)( 7,34)( 8,36)( 9,35)
(10,38)(11,37)(12,39)(13,41)(14,40)(15,42)(16,44)(17,43)(18,45)(19,48)(20,47)
(21,46)(22,51)(23,50)(24,49)(25,54)(26,53)(27,52)(56,57)(59,60)(62,63)(64,65)
(67,68)(70,71)(73,75)(76,78)(79,81);
s3 := Sym(81)!(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)
(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)
(48,75)(49,76)(50,77)(51,78)(52,79)(53,80)(54,81);
poly := sub<Sym(81)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1 >;
References : None.
to this polytope