Polytope of Type {18,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,6}*324a
if this polytope has a name.
Group : SmallGroup(324,37)
Rank : 3
Schlafli Type : {18,6}
Number of vertices, edges, etc : 27, 81, 9
Order of s0s1s2 : 9
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {18,6,2} of size 648
   {18,6,4} of size 1296
   {18,6,6} of size 1944
Vertex Figure Of :
   {2,18,6} of size 648
   {4,18,6} of size 1296
   {6,18,6} of size 1944
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,6}*108
Covers (Minimal Covers in Boldface) :
   2-fold covers : {18,6}*648b
   3-fold covers : {18,18}*972a, {54,6}*972a, {18,6}*972c, {18,18}*972f, {18,18}*972h, {18,6}*972d, {54,6}*972b, {54,6}*972c
   4-fold covers : {18,12}*1296a, {36,6}*1296b, {36,6}*1296k, {18,12}*1296k
   5-fold covers : {90,6}*1620a, {18,30}*1620a
   6-fold covers : {18,18}*1944c, {54,6}*1944b, {18,6}*1944g, {18,18}*1944s, {18,18}*1944x, {18,6}*1944j, {54,6}*1944d, {54,6}*1944f, {18,6}*1944n
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17)(20,21)(22,25)
(23,27)(24,26)(28,58)(29,60)(30,59)(31,55)(32,57)(33,56)(34,61)(35,63)(36,62)
(37,67)(38,69)(39,68)(40,64)(41,66)(42,65)(43,70)(44,72)(45,71)(46,76)(47,78)
(48,77)(49,73)(50,75)(51,74)(52,79)(53,81)(54,80);;
s1 := ( 1,28)( 2,29)( 3,30)( 4,34)( 5,35)( 6,36)( 7,31)( 8,32)( 9,33)(10,48)
(11,46)(12,47)(13,54)(14,52)(15,53)(16,51)(17,49)(18,50)(19,38)(20,39)(21,37)
(22,44)(23,45)(24,43)(25,41)(26,42)(27,40)(55,58)(56,59)(57,60)(64,78)(65,76)
(66,77)(67,75)(68,73)(69,74)(70,81)(71,79)(72,80);;
s2 := ( 1,10)( 2,12)( 3,11)( 4,13)( 5,15)( 6,14)( 7,16)( 8,18)( 9,17)(20,21)
(23,24)(26,27)(28,37)(29,39)(30,38)(31,40)(32,42)(33,41)(34,43)(35,45)(36,44)
(47,48)(50,51)(53,54)(55,64)(56,66)(57,65)(58,67)(59,69)(60,68)(61,70)(62,72)
(63,71)(74,75)(77,78)(80,81);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17)(20,21)
(22,25)(23,27)(24,26)(28,58)(29,60)(30,59)(31,55)(32,57)(33,56)(34,61)(35,63)
(36,62)(37,67)(38,69)(39,68)(40,64)(41,66)(42,65)(43,70)(44,72)(45,71)(46,76)
(47,78)(48,77)(49,73)(50,75)(51,74)(52,79)(53,81)(54,80);
s1 := Sym(81)!( 1,28)( 2,29)( 3,30)( 4,34)( 5,35)( 6,36)( 7,31)( 8,32)( 9,33)
(10,48)(11,46)(12,47)(13,54)(14,52)(15,53)(16,51)(17,49)(18,50)(19,38)(20,39)
(21,37)(22,44)(23,45)(24,43)(25,41)(26,42)(27,40)(55,58)(56,59)(57,60)(64,78)
(65,76)(66,77)(67,75)(68,73)(69,74)(70,81)(71,79)(72,80);
s2 := Sym(81)!( 1,10)( 2,12)( 3,11)( 4,13)( 5,15)( 6,14)( 7,16)( 8,18)( 9,17)
(20,21)(23,24)(26,27)(28,37)(29,39)(30,38)(31,40)(32,42)(33,41)(34,43)(35,45)
(36,44)(47,48)(50,51)(53,54)(55,64)(56,66)(57,65)(58,67)(59,69)(60,68)(61,70)
(62,72)(63,71)(74,75)(77,78)(80,81);
poly := sub<Sym(81)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1 >; 
 
References : None.
to this polytope