include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,6,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,3}*1944b
if this polytope has a name.
Group : SmallGroup(1944,2342)
Rank : 4
Schlafli Type : {6,6,3}
Number of vertices, edges, etc : 18, 162, 81, 9
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 6
Special Properties :
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,6,3}*648c, {6,6,3}*648d
9-fold quotients : {2,6,3}*216, {6,6,3}*216b
27-fold quotients : {2,6,3}*72, {6,2,3}*72
54-fold quotients : {3,2,3}*36
81-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27);;
s1 := ( 2, 3)( 5, 6)( 8, 9)(10,25)(11,27)(12,26)(13,19)(14,21)(15,20)(16,22)
(17,24)(18,23);;
s2 := ( 1,10)( 2,11)( 3,12)( 4,16)( 5,17)( 6,18)( 7,13)( 8,14)( 9,15)(22,25)
(23,26)(24,27);;
s3 := ( 4, 7)( 5, 8)( 6, 9)(10,21)(11,19)(12,20)(13,27)(14,25)(15,26)(16,24)
(17,22)(18,23);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s2*s0*s1*s3*s2*s1*s0*s1*s2*s3*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1,
s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(27)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27);
s1 := Sym(27)!( 2, 3)( 5, 6)( 8, 9)(10,25)(11,27)(12,26)(13,19)(14,21)(15,20)
(16,22)(17,24)(18,23);
s2 := Sym(27)!( 1,10)( 2,11)( 3,12)( 4,16)( 5,17)( 6,18)( 7,13)( 8,14)( 9,15)
(22,25)(23,26)(24,27);
s3 := Sym(27)!( 4, 7)( 5, 8)( 6, 9)(10,21)(11,19)(12,20)(13,27)(14,25)(15,26)
(16,24)(17,22)(18,23);
poly := sub<Sym(27)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s2*s0*s1*s3*s2*s1*s0*s1*s2*s3*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1,
s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2 >;
References : None.
to this polytope