include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,6,3,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,3,6}*1944b
if this polytope has a name.
Group : SmallGroup(1944,2344)
Rank : 5
Schlafli Type : {3,6,3,6}
Number of vertices, edges, etc : 9, 27, 27, 9, 6
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {3,6,3,2}*648b, {3,6,3,6}*648
9-fold quotients : {3,6,3,2}*216, {3,2,3,6}*216
27-fold quotients : {3,2,3,2}*72
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)(31,34)
(32,35)(33,36)(40,43)(41,44)(42,45)(49,52)(50,53)(51,54)(58,61)(59,62)(60,63)
(67,70)(68,71)(69,72)(76,79)(77,80)(78,81);;
s1 := ( 4, 8)( 5, 9)( 6, 7)(10,14)(11,15)(12,13)(19,27)(20,25)(21,26)(31,35)
(32,36)(33,34)(37,41)(38,42)(39,40)(46,54)(47,52)(48,53)(58,62)(59,63)(60,61)
(64,68)(65,69)(66,67)(73,81)(74,79)(75,80);;
s2 := ( 1,10)( 2,12)( 3,11)( 4,16)( 5,18)( 6,17)( 7,13)( 8,15)( 9,14)(20,21)
(22,25)(23,27)(24,26)(28,64)(29,66)(30,65)(31,70)(32,72)(33,71)(34,67)(35,69)
(36,68)(37,55)(38,57)(39,56)(40,61)(41,63)(42,62)(43,58)(44,60)(45,59)(46,73)
(47,75)(48,74)(49,79)(50,81)(51,80)(52,76)(53,78)(54,77);;
s3 := ( 1,28)( 2,30)( 3,29)( 4,34)( 5,36)( 6,35)( 7,31)( 8,33)( 9,32)(10,46)
(11,48)(12,47)(13,52)(14,54)(15,53)(16,49)(17,51)(18,50)(19,37)(20,39)(21,38)
(22,43)(23,45)(24,44)(25,40)(26,42)(27,41)(56,57)(58,61)(59,63)(60,62)(64,73)
(65,75)(66,74)(67,79)(68,81)(69,80)(70,76)(71,78)(72,77);;
s4 := (28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)
(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)
(49,76)(50,77)(51,78)(52,79)(53,80)(54,81);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(81)!( 4, 7)( 5, 8)( 6, 9)(13,16)(14,17)(15,18)(22,25)(23,26)(24,27)
(31,34)(32,35)(33,36)(40,43)(41,44)(42,45)(49,52)(50,53)(51,54)(58,61)(59,62)
(60,63)(67,70)(68,71)(69,72)(76,79)(77,80)(78,81);
s1 := Sym(81)!( 4, 8)( 5, 9)( 6, 7)(10,14)(11,15)(12,13)(19,27)(20,25)(21,26)
(31,35)(32,36)(33,34)(37,41)(38,42)(39,40)(46,54)(47,52)(48,53)(58,62)(59,63)
(60,61)(64,68)(65,69)(66,67)(73,81)(74,79)(75,80);
s2 := Sym(81)!( 1,10)( 2,12)( 3,11)( 4,16)( 5,18)( 6,17)( 7,13)( 8,15)( 9,14)
(20,21)(22,25)(23,27)(24,26)(28,64)(29,66)(30,65)(31,70)(32,72)(33,71)(34,67)
(35,69)(36,68)(37,55)(38,57)(39,56)(40,61)(41,63)(42,62)(43,58)(44,60)(45,59)
(46,73)(47,75)(48,74)(49,79)(50,81)(51,80)(52,76)(53,78)(54,77);
s3 := Sym(81)!( 1,28)( 2,30)( 3,29)( 4,34)( 5,36)( 6,35)( 7,31)( 8,33)( 9,32)
(10,46)(11,48)(12,47)(13,52)(14,54)(15,53)(16,49)(17,51)(18,50)(19,37)(20,39)
(21,38)(22,43)(23,45)(24,44)(25,40)(26,42)(27,41)(56,57)(58,61)(59,63)(60,62)
(64,73)(65,75)(66,74)(67,79)(68,81)(69,80)(70,76)(71,78)(72,77);
s4 := Sym(81)!(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)
(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)
(48,75)(49,76)(50,77)(51,78)(52,79)(53,80)(54,81);
poly := sub<Sym(81)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s4*s2*s3*s4*s3*s4*s2*s3*s4*s3 >;
References : None.
to this polytope